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Abstract. Renyi’s entropy can be used as a cost function for blind
source separation (BSS). Previous works have emphasized the advan-
tage of setting Renyi’s exponent to a value different from one in the
context of BSS. In this paper, we focus on zero-order Renyi’s entropy
minimization for the blind extraction of bounded sources (BEBS). We
point out the advantage of choosing the extended zero-order Renyi’s en-
tropy as a cost function in the context of BEBS, when the sources have
non-convex supports.

1 Introduction

Shannon’s entropy is a powerful quantity in information theory and signal pro-
cessing; it can be used e.g. in blind source separation (BSS) applications. Shan-
non’s entropy can be seen as a particular case of Renyi’s entropy, defined as
[1]:

hr[fX ] =

{

1
1−r log

{∫

fr
X(x)dx

}

for r ∈ {[0, 1) ∪ (1,∞)}

−E {log fX(x)} for r = 1
. (1)

The above integrals are evaluated on the support Ω(X) of the probability dis-
tribution (pdf) fX . The first-order Renyi’s entropy h1[fX ] corresponds to Shan-
non’s entropy; function hr[fX ] is continuous in r.

Previous works have already emphasized that advantages can be taken by
considering the general form of Renyi’s entropy rather than Shannon’s in the
BSS context [2]. For instance, it is interesting to set r = 2 in specific cases.
Using kernel density estimates leads to a simple estimator for h2[.].

This paper points out that in particular situations, e.g. when dealing with the
blind extraction of bounded sources (BEBS) application, zero-Renyi’s entropy
(Renyi’s entropy with r = 0) should be preferred to other Renyi’s entropies.

Renyi’s entropy with r = 0 is a very specific case; it simply reduces to the
logarithm of the support volume of Ω(X): h0[fX ] = log Vol[Ω(X)] [3]. In the
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BEBS context, it can be shown that the global minimum of the output zero-
Renyi’s entropy is reached when the output is proportional to the source with
the lowest support measure [4], under the whiteness constraint. The other sources
can then be iteratively extracted, minimizing the output zero-Renyi’s entropy in
directions orthogonal to the previously extracted signals. A similar conclusion
has been independently drawn in [5], where it is also shown that the output
support convex hull volume has a local minimum when the output is proportional
to one of the sources. The main advantage in considering zero-Renyi’s entropy
is that, under mild conditions, this cost function is free of local minima. Hence
gradient-based methods yield the optimal solution of the BEBS problem. When
the sources have strongly multimodal pdfs, this property is not shared by the
most popular information-theoretic cost functions, like e.g. mutual information,
maximum-likelihood and Shannon’s marginal entropy (see [6–9]).

This contribution aims at analyzing the condition for which the “spurious
minima-free” property of zero-Renyi’s entropy h0[fX ] holds in the context of
BEBS. First, it is shown that the output zero-Renyi’s entropy has no spurious
minimum in the BEBS application when the volume of the non-convex part of
the sources support is zero. Second, it is shown that the support Ω[.] should
be replaced by its convex hull Ω[.] in Renyi’s entropy definition (1), in order to
avoid spurious minima when the source supports have non-convex parts having a
strictly positive volume measure. These two last claims are based on the Brunn-
Minkowski inequality.

The following of the paper is organized as follows. The impact of choosing the
support pdf or its convex hull when computing Renyi’s entropy is first analyzed
in Section 2. Section 3 recalls the Brunn-Minkowski inequality. The latter is used
to discuss the existence of spurious zero-Renyi’s entropy minima depending of
the convexity of the source supports in Section 4. The theoretical results are
illustrated on a simple example in Section 5.

2 Support, convex hull and Renyi’s entropy

The density fX of a one-dimensional bounded random variable (r.v.) X satisfies
fX(x) = 0 for all x > sup(X) and x < inf(X). The support of the density is
defined as the set where the r.v. lives [10]: Ω(X) , {x : fX(x) > 0}. Another
viewpoint is e.g. to consider that the r.v. lives for x such that 0 < FX(x) < 1,
where FX is the cumulative distribution of X. Therefore, an extended definition
of the support could be : Ω(X) , {x ∈ [inf{x : fX(x) > 0}, sup{x : fX(x) >
0}]}. Then, Ω(X) can be seen as the closed bounded convex hull of Ω(X), and
obviously: Ω(X) ⊆ Ω(X).

Let us abuse notation by writing hr,Ω(X)[fX ] for hr[fX ]. Consider the slightly
modified Renyi’s entropy (called in the following extended Renyi’s entropy), de-
fined as hr,Ω(X)[fX ]: fr

X is now integrated on the set Ω(X) rather than on

the support Ω(X) in eq. (1). For r 6= 0, one gets hr,Ω(X)[fX ] = hr,Ω(X)[fX ],

because 0r = 0 for r 6= 0 and 0 log 0 = 0 by convention [10]. Conversely,
h0,Ω(X)[fX ] > h0,Ω(X)[fX ] if Vol[Ω(X)\Ω(X)] > 0 (the support contains ‘holes’
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with non-zero volume measure). Indeed, consider the Lebesgue measure µ[.],
which is the standard way of assigning a volume to subsets of the Euclidean
space. Let us assume that Ω(X) can be written as the union of I disjoint inter-
vals Ωi(X) of strictly positive volume. Using the properties of Lebesgue measure,

zero-Renyi’s entropy becomes : h0,Ω(X)[fX ] = log
∑I

i=1 µ[Ωi(X)]. This quantity

is strictly lower than h0,Ω(X)[fX ] = log µ[Ω(X)] if µ[Ω(X) \ Ω(X)] > 0. In
summary, we have:

{

hr,Ω(X)[fX ] = hr,Ω(X)[fX ] for r 6= 0.

limr→0 hr,Ω(X)[fX ] = h0,Ω(X)[fX ] ≤ h0,Ω(X)[fX ]
. (2)

The r = 0 case is thus very specific when considering Renyi’s entropies; for
other values of r, hr,Ω(X)[fX ] = hr,Ω(X)[fX ]. The r = 0 value is also the only

one for which hr,Ω(X)[fX ] can be not continuous in r. The impact of choosing

h0,Ω(X)[fX ] rather than h0,Ω(X)[fX ] as BEBS cost function is analyzed in Section

4. The study is based on Brunn-Minkowski’s inequality [11], which is introduced
below.

3 Brunn-Minkowski revisited

The following theorem presents the original Brunn-Minkowski inequality [11].

Theorem 1 (Brunn-Minkowski Inequality) If X and Y are two compact
convex sets with nonempty interiors (i.e. mesurable) in R

n, then for any s, t > 0:

Vol1/n[sX + tY] ≥ sVol1/n[X ] + tVol1/n[Y] . (3)

The operator Vol[.] stands for volume. The operator “+” means that X + Y =
{x + y : x ∈ X , y ∈ Y}. The equality holds when X and Y are equal up to
translation and dilatation (i.e. when they are homothetic).

As explained in the previous section, we use the Lebesgue measure µ[.] as
the volume Vol[.] operator. Obviously, one has µ[Ω(X)] ≥ µ[Ω(X)] ≥ 0.

Inequality (3) has been extended in [10, 12] to non-convex bodies; in this case
however, to the authors knowledge, the strict equality and strict inequality cases
were not discussed in the literature. Therefore, the following lemma, which is
an extension of the Brunn-Minkowski theorem in the n = 1 case, states suffi-
cient conditions so that the strict equality holds (the proof is relegated to the
appendix).

Lemma 1 Suppose that Ω(X) = ∪I
i=1Ωi(X) with µ[Ωi(X)] > 0 and Ω(Y ) =

∪J
j=1Ωj(Y ) with µ[Ωj(Y )] > 0, with Ω(X) ⊂ R, Ω(Y ) ⊂ R. Then:

µ[Ω(X + Y )] ≥ µ[Ω(X)] + µ[Ω(Y )] ,

with equality if and only if µ[Ω(X) \ Ω(X)] = µ[Ω(Y ) \ Ω(Y )] = 0.
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4 Zero-Renyi’s vs extended zero-Renyi’s entropy for
BEBS

Consider the linear instantaneous BEBS application, and let S1, S2, · · · , SK be
the independent source signals. If we focus on the extraction of a single output
Z, we can write Z =

∑K
i=1 c(i)Si, where c is the vector of the transfer weights

between Z and the Si. The vector c is the row of the transfer matrix C associated
to the output Z. The latter matrix is obtained by left-multiplying the unknown
mixing matrix by the unmixing matrix that has to be estimated. The unmixing
matrix row associated to c can be blindly found by minimizing h0,Ω(Z)[fZ ], under
a fixed-norm constraint to avoid that var(Z) diverges (see [4, 5]).

The following subsections discuss the impact of minimizing zero-Renyi’s en-
tropy h0,Ω(Z)[fZ ] or its extended definition h0,Ω(Z)[fZ ] for the BEBS application.

4.1 Convex supports

If the sources have convex supports Ω(Si) (Theorem 1), or if µ[Ω(Si)\Ω(Si)] = 0
(Lemma 1) for all 1 ≤ i ≤ K, then both approaches are identical: µ[Ω(Z)] =
µ[Ω(Z)]. Brunn-Minkowski equality holds, and the following relation comes:

µ[Ω(Z)] =
∑K

i=1 |c(i)|.µ[Ω(Si)]. It is known that in the K = 2 case, we can
freely parametrize c by a single angle: c can be written as [sin θ, cos θ], where
θ is the transfer angle. This parametrization of c forces the vector to have a
unit Euclidean norm. In this case µ[Ω(Z)] = µ[Ω(Z)] is concave w.r.t. θ in each
quadrant [5]. Since log f is concave if f is concave, log µ[Ω(Z)] = log µ[Ω(Z)] is
also concave. In other words, the minima of µ[Ω(Z)] w.r.t. θ can only occur at
θ ∈ {kπ/2|k ∈ Z}: all the minima of h0,Ω(Z)[fZ ] are non-mixing (corresponding
to non-spurious solutions of the BEBS problem). This last result holds for higher
dimensions, i.e. for K ≥ 2 (see [5] for more details).

4.2 Non-convex supports

In the non-convex situation, Brunn-Minkowski equality holds for the set Ω(.)
(by Theorem 1):

µ[Ω(Z)] =

K
∑

i=1

|c(i)|.µ[Ω(Si)] . (4)

It can be shown that all the minima of the above quantity w.r.t. vector c are
relevant; as in the convex-support case, they all correspond to non-spurious
solutions of the BEBS problem [5]. By contrast, the strict Brunn-Minkowski
inequality holds when a source has a support Ω(Si) such that µ[Ω(Si)\Ω(Si)] >

0. Lemma 1 gives µ[Ω(Z)] >
∑K

i=1 |c(i)|.µ[Ω(Si)]. In this case, there is no more
guarantee that µ[Ω(Z)] does not have mixing minima when a source has a non-
convex support. The next section will presents simulation results showing on a
simple example that spurious minima of µ[Ω(Z)] may exist.

As a conclusion, the best integration domain for evaluating Renyi’s entropy
for the blind separation of bounded sources seems to be Ω(Z), the convex hull
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of the output support Ω(Z). Remark that contrarily to hr,Ω(Z)[fZ ], hr,Ω(Z)[fZ ]

is not rigourously speaking a Renyi’s entropy. Nevertheless, while h0,Ω(Z)[fZ ] is
the log of the volume of Ω(Z), extended zero-Renyi’s entropy h0,Ω(Z)[fZ ] is the

log of the volume of Ω(Z)’s convex hull.

In the BEBS application, the output volume must be estimated directly
from Z, since neither c, nor the µ[Ω(Si)] are known. Therefore evaluating zero-
Renyi’s entropy requires the estimation of µ[Ω(Z)] and computing extended
zero-Renyi’s entropy requires the estimation of µ[Ω(Z)]. In [5], the support of
Ω(Z) is approximated by max(Ẑ) − min(Ẑ) (Ẑ is the set of observations of Z),
which is also a good approximation of µ[Ω(Z)] (i.e. of exp{h0,Ω(Z)[fZ ]}) when
the source supports are convex.

5 Example

Let pS1
and pS2

be two densities of independent random variables Si = Ui + Di

where U1 and U2 are independent uniform variables taking non-zero values in
[−ν, ν] (ν > 0) and D1, D2 are independent discrete random variables taking
values [α, 1 − α] at {−ξ, ξ} (ξ > 0). Suppose further that ξ > ν. Then, both
sources Si have the same density pS :

pS(s) =











α
2ν for x ∈ [−ξ − ν,−ξ + ν]
1−α
2ν for x ∈ [ξ − ν, ξ + ν]

0 elsewhere.

(5)

It results that Ω(Si) = {x ∈ [−ξ − ν,−ξ + ν] ∪ [ξ − ν, ξ + ν]} and Ω(Si) =
{x ∈ [−ξ − ν, ξ + ν]}, which implies µ[Ω(Si)] = 4ν and µ[Ω(Si)] = 2ξ + 2ν. By
Lemma 1, we have µ[Ω(S1 + S2)] = µ[Ω(S1)] + µ[Ω(S2)] and µ[Ω(S1 + S2)] >
µ[Ω(S1)] + µ[Ω(S2)].

Let us note Z = cos θS1 + sin θS2. Equation (4) guarantees that µ[Ω(Z)]
is concave with respect to θ. By contrast, according to Section 4.2, there is no
guarantee that µ[Ω(Z)] has no minima for θ /∈ {kπ/2|k ∈ Z}.

Figure 1 illustrates the effect of the source support convexity on hr[fZ ] w.r.t.
θ for various values of r in the above example. Note that the omitted scales of
vertical axes are common to all curves. We can observe that hr[fZ ] has spurious
minima regardless of r; there exist local minima of the zero-entropy criterion for
which Z is not proportional to one of the sources. By contrast, when considering
the extended zero-Renyi’s entropy hr,Ω(Z)[fZ ], no spurious minimum exists: all

the hr,Ω(Z)[fZ ] local minima correspond to Z = ±Si. Note that in Figure 1 (a),

hr1
[fZ ] < hr2

[fZ ] if r1 < r2. This result can be theoretically proven by Hölder’s
inequality: Renyi’s entropy hr[f ] is decreasing in r, and strictly decreasing unless
f is a uniform density [13].



6 Vrins, Erdogmus, Jutten and Verleysen

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

)]([log][)(,0 Zfh ZZ Ω=Ω µ

][][ )(,)(, ZZrZZr fhfh ΩΩ =

][][ )(,)(, ZZrZZr fhfh ΩΩ =

��������������	�
����
��

����� � ��������	�
���

(a) ξ = 8, ν = 1: the source supports Ω(Si) are non-convex

0 π/4 π/2 3π/4 π/2 5π/4 3π/2 7π/4 2π

][][ )(,)(, ZZrZZr fhfh ΩΩ = ��������������	�
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(b) ξ = 0.5, ν = 1: the source supports Ω(Si) are convex

Fig. 1. Extended zero-Renyi (–), Shannon (- -), and r-Renyi entropies with r 6= {0, 1}
(..).

6 Conclusion and perspectives

This paper focusses on zero-Renyi’s entropy for blind extraction of bounded
sources. Theoretical results show that if the sources have convex supports, both
zero-Renyi and extended zero-Renyi’s entropies are free of spurious minima.
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However, this is no more true when the source support contains “holes” of
positive volume. In this case, simulation results seem to indicate that the order
of Renyi’s entropy (i.e. parameter r) has no influence on the existence of local
spurious minima, see Figure 1 (a). Nevertheless, when considering the extended
zero-Renyi’s entropy, Brunn-Minkowski inequality shows that this cost function
is free of spurious minima, when the support is correctly estimated.

Finally, new perspectives for Renyi entropy-based BSS/BEBS algorithms
arise from the results presented in this paper. Despite the “no spurious minima”
property of the extended zero-Renyi’s entropy which is not shared by Shannon’s
one, both the output support volume and Shannon’s entropy BEBS can be used
in deflation algorithms for source separation. Indeed, it is known that the En-
tropy Power inequality shows that Shannon’s entropy can be used in deflation
procedures for BSS. On the other hand, this paper shows that Brunn-Minkowski
inequality justifies the use of zero-Renyi’s entropy for the sequential extraction
of bounded sources. Conversely, to the authors knowledge, there is no proof to
date justifying the use of Renyi’s entropy for r 6= 0 and r 6= 1 in deflation
BSS/BEBS algorithms. It is thus intriguing to remark that the two aforemen-
tioned information-theoretic inequalities are closely related [12]. By contrast,
the sum of output Renyi’s entropies can be seen as a cost function for symmet-
ric BSS (all sources are extracted simultaneously), as explained in [2]. As it is
known that values of r different from 0 and 1 are also interesting in specific BSS
applications, future work should then study deflation methods based on general
Renyi’s entropy definition (of order r ∈ R

+).
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Appendix: Proof of Lemma 1

Suppose that µ[Ω(X)] = µ[Ω(X)] > 0 and µ[Ω(Y )] = µ[Ω(Y )] > 0. This means
that µ[Ω(X)\Ω(X)] = µ[Ω(Y )\Ω(Y )] = 0. Therefore, the sets Ω(X) and Ω(Y )
can be expressed as

{

Ω(X) = [inf X, sup X] \ ∪I′

i=1{xi}

Ω(Y ) = [inf Y, sup Y ] \ ∪J ′

j=1{yj}
(6)

where xi, yi are isolated points. Then,

µ[Ω(X + Y )] = µ[Ω(X + Y )]

= (sup X + sup Y ) − (inf X + inf Y )

= µ[Ω(X)] + µ[Ω(Y )] ,

which yields the first result of the Lemma.
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To prove the second claim, suppose that X? = ∪I−1
i=1 [Xm

i , XM
i ] \ ∪I′

i′=1{xi′},

Y ? = ∪J−1
j=1 [Y m

j , Y M
j ] \ ∪J ′

j′=1{yj′} and X = X? ∪ [Xm
I , XM

I ] \ ∪I?

i?=1{xi?}, Y =

Y ? ∪ [Y m
J , Y M

J ] \ ∪J?

j?=1{yj?} where Xm
i < XM

i < Xm
i+1, Y m

i < Y M
i < Y m

i+1 and

Xm
I = XM

I−1 + ε, ε > 0. Then, if we note ∆X , XM
I −Xm

I and ∆Y , Y M
J −Y m

J ,
we have:

µ[Ω(X +Y )] ≥ µ[Ω(X? +Y )]+
{

(Y M
J +XM

I )−max(XM
I−1 +Y M

J , Y m
J +Xm

I )
}

,

where the term into brackets is a lower bound of the sub-volume of Ω(X + Y )
due to the interval [Xm

I , XM
I ]; it can be rewritten as min{∆X + ε,∆X + ∆Y }.

Finally, having the Brunn-Minkowski inequality in mind, one gets:

µ[Ω(X + Y )] ≥ µ[Ω(X? + Y )] + min{∆X + ε,∆X + ∆Y }

≥ µ[Ω(X)] − ∆X + µ[Ω(Y )] + min{∆X + ε,∆X + ∆Y }

> µ[Ω(X)] + µ[Ω(Y )] .

References

1. Principe, J.C Xu, D. & Fisher III, J.W. (2000) “Information-Theoretic Learning.”
In Unsup. Adapt. Filtering I, pp. 265–319, Haykin, S. Edt, Wiley, New York.

2. Erdogmus, D., Hild, K.E. & Principe, J.C. (2002) Blind source separation using
Renyi’s α-marginal entropies. Neurocomputing, 49, pp. 25–38.

3. Guleryuz, O.G., Lutwak, E., Yang, D., & Zhang, G. (2000) Information-theoretic
inequalities for contoured probability distributions. IEEE Trans. Inf. Theory, 48(8),
pp. 2377–2383.

4. Cruces, S. & Duran, I. (2004) The minimum support criterion for blind source
extraction: a limiting case of the strengthened Young’s inequality. In proc. ICA,
Int. conf. on ind. comp. anal. and blind sig. sep., LNCS 3195, pp. 57–64, Granada
(Spain).

5. Vrins, F., Jutten, C. & Verleysen, M. (2005) SWM : a class of convex contrasts for
source separation. In proc. ICASSP, IEEE Int. conf. on acoustics, speech and sig.

proc., vol. V, pp. 161-164, Philadelphia (USA).
6. Vrins, F. & Verleysen, M . (2005) On the entropy minimization of a linear mixture

of variables for source separation. Signal Proc., 85(5): 1029–1044, Elsevier.
7. Learned-Miller, E.G. & Fisher III, J.W. (2003) ICA using spacings estimates of

entropy. Journal of Machine Learning Research, 4, pp. 1271–1295, MIT press.
8. Pham, D.T. & Vrins, F. (2005) Local minima of information-theoretic criteria in

blind source separation. To appear in IEEE Sig. Proc. Lett., 12(11) pp. 788-791.
9. Cardoso, J.-C. (2000) “Entropic Contrast for Source Separation: Geometry & Sta-

bility.” In Unsup. Adapt. Filtering I, pp. 265–319, Haykin, S. edt, Wiley, New York.
10. Cover, Th. & Thomas, J. A. (1991) Elements of Information Theory. Wiley, New-

York.
11. Gardner, R.J. (2002) The Brunn-Minkowski inequality. Bull. of the Amer. Math.

Soc., 39(3), pp. 355–405.
12. Costa, M. & Cover Th. (1984) On the similarity of the entropy power inequality

and the Brunn-Minkowski inequality. IEEE Trans. Inf. Theory, 30(6), pp. 837–839.
13. Lutwak, E., Yang, D., & Zhang, G. (2005) Cramér-Rao and moment-entropy in-

equalities for Renyi entropy and generalized Fisher information. IEEE Trans. Inf.

Theory, 51(2), pp. 473–478.


