
A Comparison of Linear ICA and Local Linear ICA for 
Mutual Information Based Feature Ranking 

Tian Lan1, Yonghong Huang2, Deniz Erdogmus1,2 

1 BME Department, OGI, Oregon Health & Science University, Portland, OR, USA. 
lantian@bme.ogi.edu 

2 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA. 
{huang,deniz}@csee.ogi.edu 

Abstract. Feature selection and dimensionality reduction is important for high 
dimensional signal processing and pattern recognition problems. Feature selec-
tion can be achieved by filter approach, in which certain criteria must be opti-
mized. By using mutual information (MI) between feature vectors and class la-
bels as the criterion, we proposed an ICA-MI framework for feature selection. 
In this paper, we will compare the linear ICA and local linear ICA for the accu-
racy of MI estimation, and study the bias-variance trade-off on feature projec-
tions and ranking. 

1   Introduction 

Recent trends in multi-sensor signal processing coupled with multidimensional sta-
tistical feature extraction techniques for pattern recognition leads to extremely high 
dimensional classification problems, EEG-based pattern recognition problems being 
one such scenario. Dimensionality reduction and feature selection, therefore, becomes 
crucial for accurate and robust classifier design. Techniques based on mutual infor-
mation maximization between features and class labels has attracted increasing atten-
tion, because this approach can find out the most relevant features, therefore (i) re-
duces the computational load in real-time system; (ii) can eliminate irrelevant or noisy 
features, hence increases the robustness of the system; (iii) is a filter approach, which 
is independent of the design of classifier, and is more flexible.  

 The MI based method for feature selection is motivated by lower and upper 
bounds in information theory [1,2]. The average probability of error has been shown 
to be related to MI between the feature vectors and the class labels. Fano’s and Hell-
man & Raviv’s bounds demonstrate that probability of error is bounded from below 
and above by quantities that depend on the Shannon MI between these variables. 
Specifically, Hellman & Raviv showed that the upper bound on Bayes error is given 
by (HS(C)-IS(Y,C))/2, where HS(C) is the Shannon entropy of the a priori probabilities 
of the classes and IS(Y,C) is the Shannon MI between the continuous-valued feature 
vector and the discrete-valued class label. Maximizing this MI reduces the upper 
bound as well as Fano’s lower bound, therefore, forces the probability of error to 
decrease. 



Estimating MI requires the knowledge of the joint pdf of the data in the feature 
space. This is an especially data consuming estimation problem, and if possible must 
be avoided. Utilizing individual mutual information of the features with the class 
labels will surely lead to suboptimal selections, since features are generally mutually 
dependent and information redundancies cannot be captured with such an approach. 
Several MI-based methods have been developed for feature selection in the past years 
[3-8]. Unfortunately, all of these methods failed to solve the particularly difficult high 
dimensional situation – partly because of the curse of dimensionality that is particu-
larly severe for MI estimation. 

In practice, MI must be estimated non-parametrically from the training samples. 
Although this is a challenging problem for multiple continuous-valued random vari-
ables, in classification, the discrete-valued class labels simplify the problem to esti-
mating joint entropy of continuous random vectors. Further simplification is possible 
if the components of the random vectors are independent or made independent – then 
the joint entropy becomes the sum of marginal entropies, which are easier to estimate. 
Thus, the joint mutual information of a feature vector with the class labels is equal to 
the sum of marginal mutual information of each individual feature with the class 
labels, provided that the features are independent. In previous work, we exploited this 
fact and proposed a framework using ICA transformation and sample-spacing estima-
tor to estimate the mutual information between features and class labels [9]. This 
framework is superior because it is open to diverse algorithms, i.e. each component, 
including ICA transformation and entropy estimator can be replaced by any qualified 
algorithm/alternative. Applying linear ICA to an arbitrary feature vector has the 
drawback that in nonlinear classification problems, the linear ICA model possibly 
fails, thus estimated MI values are inaccurate. For such situations, nonlinear ICA 
methods become necessary, and we focus particularly on local linear ICA for this 
purpose. 

In this paper, we will investigate the use of linear and local linear ICA for mutual 
information estimation. We will compute the estimation bias arising from the possi-
bility that linear ICA might not achieve perfect independence, and study the bias-
variance trade-off on feature projections and ranking. 

2   Problem Formulation and Asymptotic Analysis 

Consider a group of nonlinearly distributed, n-dimensional feature vectors: 
x=[x1,x2,...,xn]T. Dimensionality reduction on such a feature vector has to be done to 
improve the generalization capability of the following classifier without compromis-
ing accuracy. The information inequalities mentioned above indicate that the sub-
space projection should be carried out in a manner that maintains as much mutual 
information with the class labels as possible. The subspace projection can be achieved 
by linear/nonlinear projections, as well as feature selection (the latter is a special case 
of linear projections with binary matrix entries – 0 or 1). 

 Projection approach: The goal is to determine linear or nonlinear projections that 
jointly maximize their mutual information with the class labels. Specifically, if 
y=g(x), then we must determine g(.) such that IS(Y;C) is maximal. If g is a solution to 



the nonlinear ICA problem given mixture x, then the best m-dimensional nonlinear 
projection for this NICA solution is the subset y1,…,ym such that IS(Y1;C)>IS(Y2;C)>… 
>IS(Yn;C). Since there are infinitely many solutions to the NICA problem, additional 
constraints on the form of g must be imposed. These constraints are typically imposed 
as model order limitations for parametric nonlinear projections (such as a neural net-
work) or simply as the utilization of a linear projection. For further discussions, we 
will focus on feature selection for simplicity. 

Feature selection: Given a high dimensional feature vector x, our goal is to find 
the best m dimensional subset of features (in terms of maximum MI with C). This is a 
combinatorial search problem, and often m is not defined a priori. An alternative 
strategy is to rank the features and pick the top m features from this ranking. Given 
previously ranked d-1 features x(1),…, x(d-1) the dth feature is the one that maximizes 
the joint MI: IS(x(1),…, x(d-1),x(?);C). The joint mutual information takes into account 
any redundancies in the new feature with the previously ranked d-1 features. This 
ranking procedure requires the repeated evaluation of d-dimensional MI values. The 
following procedure is utilized for this purpose. 

 We first apply a suitable clustering algorithm to segment the data into p parti-
tions: x(1), x(2), …, x(p). We assume that within each partition x(i), the data is d dimen-
sional, and distributed in accordance with the linear ICA model. We apply the linear 
ICA transformation on each partition C+1 times to get feature vectors: y(i|c) and y(i) for 
each partition, where c denotes class labels and y(i|c) are the independent components 
of data in cluster i from class c only, y(i) are the independent components of data in 
cluster i regardless of class labels. As a result of the linear ICA transformation, we 
have: 
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where i = 1,…,p, and Wi and Wi|c are the corresponding ICA separation matrices. If 
linear ICA works perfectly, then the joint entropy of y(i|c) and y(i) reduces to the sum 
of marginal entropies. However, this is not guaranteed, therefore, the residual mutual 
information will remain as an estimation bias. In practice, we have an imperfect ICA 
solution and 
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Mutual information satisfies the following additivity property for any partition (qi 
denoting the probability mass of the corresponding partition): 
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The mutual information within each partition can be expressed as a linear combina-
tion of entropy values as follows: 
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where pic denotes the probability mass of class c in partition i. Substituting (2) in (4) 
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The last parenthesis in (5) shows the estimation bias one makes when estimating the 
MI within each partition if it is assumed that the local linear ICA solution in that 
partition achieved perfect separation. Over all partitions, the total estimation bias 
(estimated MI minus the actual MI) is averaged as follows: 
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Note that asymptotically as the number of partitions approach infinity, one could 
utilize a grid partitioning structure within which the probability distributions would 
be uniform, thus local linear ICA would achieve perfect separation within each infini-
tesimal hypercube. However, in practice, one cannot utilize infinitely many partitions 
given a finite number of samples. Note that the analysis above also holds for the case 
where linear ICA is employed directly on the whole dataset without any partitions. 

3   Empirical Study 

We have employed the feature ranking method described above to benchmark data-
sets. Partitions are identified via K-means clustering, local linear ICA solutions are 
determined using joint diagonalization of second and fourth order cumulants [10], 
and marginal entropies are estimated using sample spacing estimators [11]. 

3.1   Experiments on a Synthetic Dataset 

This dataset consists of four dimensional feature vectors: xi (i=1,…,4), where x1 and 
x2 are nonlinearly related (Fig. 1 - left), x3 and x4 are independent from the first two 
features and are Gaussian distributed with different mean and variance (Fig. 1 - 
right). There are two classes in this dataset (represented as blue/red or different gray-
scale levels in print). These two classes are separable in the x1 and x2 plane, but over-
lapping in the x3 and x4 plane. It is clear that this dataset can be well classified only 
using x1 and x2, while x3 and x4 provides redundant and insufficient information for 
perfect classification. From Fig. 1 we can see that x2 has less overlap compared with 
x1, while x3 has less overlap than x4. So ideally, the feature ranking in descending 
order of importance in terms of classification rate should be x2, x1, x3, x4. In our ex-
periments, we choose the sample size as 1000 used 20 partitions. The ‘+’ in Fig.1 
represents the partition centers. We also apply linear ICA without any partitioning. 
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Figure 1 Four-dimensional Synthetic dataset and corresponding cluster centers. Left: distribu-
tion of x1 and x2; Right: distribution of x3 and x4. 
 

Table 1 Feature ranking frequencies on the Iris dataset. 

Methods Ranking indices 
Linear ICA   4     3     2     1   (10) 

Local linear ICA 4     1     2     3   (5) 
4     2     3     1   (3) 
4     2     1     3   (2) 
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Figure 2 Classification accuracy for Iris data by linear ICA-MI and Local linear ICA-MI meth-
ods. The classification accuracy is the average over 10 Monte Carlo simulations. 

The linear ICA approach finds the ranking to be x2, x1, x4, x3, while the local linear 
ICA approach with 20 partitions finds the expected correct ranking. 

3.2   Experiments on the Iris Dataset 

In this experiment, we applied linear and local linear ICA (with 2 partitions) ap-
proaches to the ranking of the features for the Iris dataset from the UCI database [12]. 
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igure 3 Combinational distribution of 2 feature vectors of Iris dataset. Left: distribution of x4 
nd x2; Middle: distribution of x4 and x3; Right: distribution of x4 and x1. 

able 2. Feature Ranking results on Wisconsin Breast Cancer dataset for different ICA-MI 
ethods in 10 Monte Carlo simulations. The frequency of different ranking of 10 Monte Carlo 

imulations are shown inside the bracket. 

Methods Ranking indices 
Linear ICA 3     2     9     4     5     6     7     8     1   (9) 

3     2     9     4     5     8     7     6     1   (1) 
 

Local linear ICA 3     1     2     4     5     6     7     8     9   (4) 
3     4     6     8     7     1     9     2     5   (3) 
3     1     4     5     9     6     8     2     7   (3) 
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igure 4 Classification accuracy for Wisconsin Breast Cancer data by different ICA-MI meth-
ds. The classification accuracy is the average over 10 Monte Carlo simulations. 
ue to the small sample size, 10 Monte Carlo rankings with randomly selected train-
ng (used for ranking) and test sets are utilized, each consisting of 50% of the avail-
ble samples. For each ranked subset, a Gaussian Mixture Model (GMM) based 
ayesian classifier is employed. The frequency of rankings and classification accu-

acy are shown in Table 1. and Fig. 2. Since both methods agree on the fourth feature 
s the top one, pairwise scatter plots of this feature with the remaining features are 
hown in Fig. 3 for visual comparison. Feature 3 seems to yield a more compact class 



distribution, while features 1 and 4 seem to have less overlapping samples. Still, it is 
difficult to judge and we rely on the GMM performances on the testing set for the 
final comparison. The classification accuracy in Fig. 2. shows that local linear ICA 
yields better performance than linear ICA in Iris data. 

3.3   Experiments on the Wisconsin Breast Cancer Dataset 

The two methods are applied to this benchmark dataset, which has higher dimension-
ality than the previous two case studies. Local linear ICA approach uses 2 partitions 
and the Monte Carlo ranking approach is employed as before. The ranking and classi-
fication accuracy are shown in Table 2. and Fig. 4. Local linear ICA also exhibit 
better performance than linear ICA. Consider the number of data samples and the 
dimensions, if we partition data into more segments, the performance degrades due to 
the lack of data for reliable linear ICA transformation within each partition.  

4 Conclusions 

Feature projections and feature selection are important preprocessing procedures in 
contemporary pattern recognition problems with extremely high dimensional feature 
vectors. Mutual information maximization provides a suitable filter methodology with 
proven optimality properties regarding the minimization of bounds for the probability 
of error one would attain when features selected based on this criteria are utilized. 

In this paper, we analyzed the finite sample bias of a local linear ICA based mu-
tual information estimation scheme that can be conveniently used for ranking features 
for subset selection. Experimental evaluation of the proposed method using 1 and 
more partitions in localization have revealed that as expected, more accurate results 
are obtained when large sample sets are available for MI evaluation. The sample size 
must increase appropriately with increasing data dimensionality; otherwise, the esti-
mates are prone to breaking down at higher dimensional estimations, yielding unreli-
able rankings after a few dimensions. In very high dimensional and small data size 
situations, simply assuming a single partition and employing linear ICA rather than 
local linear ICA might lead to more robust ranking and selection results, though will 
be based on more biased MI estimates. The bias-variance trade-off will be the 
determining factor in the choice of the number of partitions for local linear ICA. 

Acknowledgments 

This work was supported by DARPA under contract DAAD-16-03-C-0054 and by 
NSF under grant ECS-0524835. 



References 

1.   R. M. Fano, Transmission of Information: A Statistical Theory of Communica-
tions. Wiley, New York, 1961. 

2. M.E. Hellman, J. Raviv, “Probability of Error, Equivocation and the Chernoff 
Bound,” IEEE Transactions on Information Theory, vol. 16, pp. 368-372, 1970. 

3 K. Torkkola, “Feature Extraction by Non-Parametric Mutual Information Maxi-
mization,” Journal of Machine Learning Research, vol. 3, pp. 1415-1438, 2003. 

4 R. Battiti, “Using Mutual Information for Selecting Features in Supervised Neu-
ral Networks learning,” IEEE Trans. Neural Networks, vol. 5, no. 4, pp. 537-550, 
1994. 

5 A. Ai-ani, M. Deriche, “An Optimal Feature Selection Technique Using the 
Concept of Mutual Information,” Proceedings of ISSPA, pp. 477-480, 2001. 

6 N. Kwak, C-H. Choi, “Input Feature Selection for Classification Problems,” 
IEEE Transactions on Neural Networks, vol. 13, no. 1, pp. 143-159, 2002. 

7 H.H. Yang, J. Moody, “Feature Selection Based on Joint Mutual Information,” in 
Advances in Intelligent Data Analysis and Computational Intelligent Methods 
and Application, 1999. 

8   H.H. Yang, J. Moody, “Data Visualization and Feature Selection: New Algo-
rithms for Nongaussian Data,” Advances in NIPS, pp. 687-693, 2000. 

9 T. Lan, D. Erdogmus, A. Adami, M. Pavel, “Feature Selection by Independent 
Component Analysis and Mutual Information Maximization in EEG Signal Clas-
sification,” Proceedings of IJCNN’05, Montreal, Canada, pp. 3011-3016, Aug. 
2005. 

10  L. Parra, P. Sajda, “Blind Source Separation via Generalized Eigenvalue Decom-
position,” Journal of Machine Learning Research, vol. 4, pp. 1261-1269, 2003. 

11 E.G. Learned-Miller, J.W. Fisher III, “ICA Using Spacings Estimates of 
Entropy,” Journal of Machine Learning Research, vol. 4, pp. 1271-1295, 2003. 

12  http://www.ics.uci.edu/~mlearn/MLRepository.html 


