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Abstract. This paper addresses the problem of efficient information
theoretic, non-parametric data clustering. We develop a procedure for
adapting the cluster memberships of the data patterns, in order to maxi-
mize the recent Cauchy-Schwarz (CS) probability density function (pdf)
distance measure. Each pdf corresponds to a cluster. The CS distance is
estimated analytically and non-parametrically by means of the Parzen
window technique for density estimation. The resulting form of the cost
function makes it possible to develop an efficient adaption procedure
based on constrained gradient descent, using stochastic approximation of
the gradients. The computational complexity of the algorithm is O(MN),
M � N , where N is the total number of data patterns and M is the num-
ber of data patterns used in the stochastic approximation. We show that
the new algorithm is capable of performing well on several odd-shaped
and irregular data sets.

1 Introduction

In data analysis, it is often desirable to partition, or cluster, a data set into sub-
sets, such that members within subsets are more similar to each other according
to some criterion, than to members of other subsets. Clustering has many impor-
tant applications in computer vision and pattern recognition. See for example
ref. [1] for a review.
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Most of the traditional algorithms, such as fuzzy K-means [2] and the expectation-
maximization algorithm for a Gaussian mixture model (EMGMM) [3], work well
for hyper-spherical and hyper-elliptical clusters, since they are often optimized
based on a second order statistics criterion. Therefore, in recent years, the main
thrust in clustering has been towards developing efficient algorithms capable of
handling odd-shaped and highly irregular clusters.

Information theoretic methods appear as particularly appealing alternatives
as clustering cost functions when it comes to capturing all the structure in a
data set. The reason is that pdf distance measures in theory do capture all the
information contained in the data distributions in question. Several information
theoretic approaches to clustering have been proposed in recent years, see for
example refs. [4–7]. The problem with many such methods is often that the in-
formation theoretic measure can be difficult to estimate. Analytical estimation
most often requires the user to choose a parametric model for the data distribu-
tions. Hence, the clustering algorithm will only perform well if the parametric
model matches the actual densities. Also, the optimization of the cost function
is often computationally demanding.

In this paper, we address the problem of efficient information theoretic, non-
parametric data clustering. We develop a procedure for adjusting the cluster
memberships of the data points, which seeks to maximize the CS pdf distance
measure. Since the estimated pdfs, at each iteration cycle, are based on the
current clusters, the approach is to assign the memberships of the data such that
the CS distance between the obtained clusters is maximized. The CS distance
can be estimated analytically and non-parametrically by means of the Parzen
window technique for density estimation. Hence, the cost function captures all
the statistical information contained in the data.

By estimating the cluster pdfs using the Parzen window technique, the CS
distance can be expressed in terms of cluster memberships with respect to a
predetermined number of clusters. Of course, in clustering, the memberships
are not known beforehand, and have to be initialized randomly. The adaption
procedure for these memberships, maximizing the CS cost function, is carried out
by means of the Lagrange multiplier formalism. The procedure can be considered
a constrained gradient descent search, with built in variable step-sizes for each
coordinate direction.

The resulting algorithm has a complexity of order O(N 2), where N is the
number of data patterns. In practical clustering problems, the data sets may
be very large. Thus, it is of crucial importance to reduce the complexity of the
algorithm. To achieve this goal, we derive a stochastic approximation approach
to estimating the gradients used in the clustering rule. Instead of calculating the
gradients based on information from the memberships corresponding to all the
data points, we stochastically sample the membership space, using only M � N
randomly selected membership functions and their corresponding data points, to
calculate the gradients. As a result, we obtain an efficient information theoretic
clustering algorithm of only O(MN) complexity.



The Parzen window size will also be used to avoid a pitfall of gradient descent
learning in non-convex cost functions, i.e., the convergence to a local optimum
of the cost function. We show that in our algorithm, this problem can to a high
degree be avoided, by allowing the size of the Parzen kernel to be annealed over
a range of values around the optimally estimated value. The effect of using a
large kernel compared to the optimal kernel size, is to obtain an over-smoothed
version of the CS cost function, such that many local optima are eliminated.
As the algorithm converges toward the optimum of the smoothed CS distance,
the kernel size is continuously decreased, leading the algorithm toward the true
global optimum. We propose a method to select a suitable annealing scheme
based on the optimal Parzen kernel, which is, however, rather heuristic at this
point.

The organization of this paper is as follows. In section 2, we review the
Cauchy-Schwarz pdf distance measure. In section 3, we develop the Lagrange
multiplier optimization procedure, and show how the gradients can be stochasti-
cally approximated to obtain an efficient clustering algorithm. We present some
clustering experiments in section 4, and make our concluding remarks in section
5.

2 Cauchy-Schwarz PDF Distance

Based on the Cauchy-Schwarz inequality; ||x||2 ||y||2 ≥ (xT y)2, the following
holds;

− log
xT y

√

||x||2 ||y||2
≥ 0. (1)

By replacing inner products between vectors in (1), by inner products between
pdfs, i.e. 〈p, q〉 =

∫

p(x)q(x)dx, we define the following distance measure [8]

D(p, q) = − log

∫

p(x)q(x)dx
√

∫

p2(x)dx
∫

q2(x)dx
≥ 0. (2)

We refer to D(p, q) as the Cauchy-Schwarz pdf distance measure. It can be seen
that D(p, q) is always non-negative, it obeys the identity property, and it is
also symmetric. The D(p, q) goes to infinity when the overlap between the two
pdfs goes to zero. The measure does however not obey the triangle inequality,
such that it does not satisfy the strictly mathematical definition of a distance
measure.

Since the logarithm is a monotonic function, maximization of D(p, q) is equiv-
alent to minimization of the argument of the log in (2). In this paper, we refer
to this quantity as J(p, q), and the goal is to develop an efficient minimization
scheme for this quantity.

Assume that we estimate p(x) based on the data points in cluster C1 =
{xi}, i = 1, . . . , N1, and q(x) based on C2 = {xj}, j = 1, . . . , N2. By the Parzen



[9] method

p̂(x) =
1

N1

N1
∑

i=1

G(x − xi, σ
2I),

q̂(x) =
1

N2

N2
∑

j=1

G(x − xj , σ
2I), (3)

where we have used symmetric Gaussian kernels, G(x,Σ), where Σ = σ2I. Ac-
cording to the convolution theorem for Gaussians, the following relation holds

∫

G(x − xi, σ
2I)G(x − xj , σ

2I)dx = Gij,2σ2I, (4)

where Gij,2σ2I = G(xi − xj , 2σ2I).
Thus, when we plug the Parzen pdf estimates of (3) into (2), and utilize (4),

we obtain
∫

p(x)q(x)dx ≈ 1

N1N2

N1,N2
∑

i,j=1

Gij,2σ2I, (5)

∫

p2(x)dx ≈ 1

N2
1

N1,N1
∑

i,i′=1

Gii′ ,2σ2I, (6)

and likewise for
∫

q2(x)dx, such that

J(p, q) =
1

N1N2

∑N1,N2

i,j=1 Gij,2σ2I

√

1
N2

1

∑N1,N1

i,i′=1 Gii′ ,2σ2I
1

N2
2

∑N2,N2

j,j′=1 Gjj′ ,2σ2I

. (7)

For each data pattern xi, i = 1, . . . , N , N = N1 + N2, we now define a mem-
bership vector mi. If xi belongs to cluster C1 (C2), the corresponding crisp
membership vector equals mi = [1, 0]T ([0, 1]T ). This allows us to rewrite (7) as
a function of the memberships, obtaining;

J(p, q) =
1
2

∑N,N

i,j=1

(

1 −mT
i mj

)

Gij,2σ2I

√

∏2

k=1

∑N,N

i,j=1 mikmjkGij,2σ2I

, (8)

where mik (mjk), k = 1, 2, denotes element number k of mi (mj). In the sequel
we will make explicit that the variable quantities in (8) are the membership
vectors, thus, we will use the notation J(m1, . . . ,mN ) instead of J(p, q).

In the case of multiple clusters, Ck, k = 1, . . . , K, we extend the previous
definition as follows

J(m1, . . . ,mN) =
1
2

∑N,N

i,j=1

(

1 −mT
i mj

)

Gij,2σ2I

√

∏K
k=1

∑N,N
i,j=1 mikmjkGij,2σ2I

, (9)



where each mi, i = 1, . . . , N , is a binary K dimensional vector. Only the k’th
element of any mi equals one, meaning that the corresponding data pattern xi

is assigned to cluster k.
The cost function J(m1, . . . ,mN) is related to the cluster evaluation func-

tion used by Gokcay and Principe [10]. They basically clustered based on the
numerator of (9), which can be considered equivalent to a “between-cluster”
Renyi entropy measure. Their clustering technique was based on calculating the
cluster evaluation function for all clustering possibilities, hence impractical for
anything but very small data sets. We incorporate the “within-cluster” Renyi
entropies in the cost function, which are equivalent to the quantities in the de-
nominator of (9). This helps balance the cost function, and avoids problems such
as obtaining a minimum of the cost function when only one data point is isolated
in a cluster, and all the other data points in the remaining cluster. In addition,
in the following we will derive an efficient optimization technique for minimizing
J(m1, . . . ,mN).

We assume a-priori knowledge about the number, K, of clusters inherit in the
data set. This may seem to be a strict assumption, and in some cases it probably
is. However, much research has been conducted with regard to estimating the
number of clusters present in a data set. See e.g. [11] for an overview of different
cluster indicies.

3 Lagrange Optimization

In order to minimize (9) using differential calculus techniques, we need to fuzzify
the membership vectors such that mi ∈ [0, 1], i = 1, . . . , N . Accordingly, we
suggest to solve the following constrained optimization problem

min
m1,...,mN

J(m1, . . . ,mN ), (10)

subject to mT
j 1−1 = 0, j = 1, . . . , N , where 1 is a K-dimensional ones-vector.

Now we make a convenient change of variables. Let mik = v2
ik , k = 1, . . . , K.

Consider
min

v1,...,vN

J(v1, . . . ,vN ), (11)

subject to vT
j vj − 1 = 0, j = 1, . . . , N . The constraints for the problem stated

in (11) are equivalent to the constraints for (10).The optimization problem, (11),
amounts to adjusting the vectors vi, i = 1, . . . , N , such that

∂J

∂vi

=

(

∂J

∂mi

T ∂mi

∂vi

)T

= Γ
∂J

∂mi

→ 0, (12)

where Γ = diag(2
√

mi1, . . . , 2
√

miK). We force all elements 2
√

mik, k = 1, . . . , K,
to always be positive by adding a small positive constant ε during each mem-
bership update. Hence, ∂J

∂vi
→ 0 implies ∂J

∂mi
→ 0. Thus, these scalars can be

interpreted as variable step-sizes built into the gradient descent search process,



as a consequence of the change of variables that we made. We will return to the
derivation of ∂J

∂mi

in subsection 3.2, and to the stochastic approximation of this
quantity.

The necessary conditions for the solution of (11) are commonly generated by
constructing the Lagrange function, given by

L = J(v1, . . . ,vN ) +

N
∑

j=1

λj

(

vT
j vj − 1

)

, (13)

where λj , j = 1, . . . , N , are the Lagrange multipliers. The necessary conditions
for the extremum of L are given by

∂L

∂vi

=
∂J

∂vi

+

N
∑

k=1

λk

∂

∂vi

(

vT
k vk − 1

)

= 0, (14)

∂L

∂λj

= vT
j vj − 1 = 0, (15)

for i, j = 1, . . . , N . From (14) we derive the following fixed-point adaption rule

for the vector vi as follows

∂J

∂vi

+ 2λivi = 0 ⇒ v+
i = − 1

2λi

∂J

∂vi

, (16)

i = 1, . . . , N , and where v+
i denotes the updated vector.

We solve for the Lagrange multipliers, λi, i = 1, . . . , N , by evaluating (15),
yielding

λi =
1

2

√

∂J

∂vi

T ∂J

∂vi

. (17)

After convergence of the algorithm, or after a predetermined number of itera-
tions, we designate the maximum value of the elements of each mi, i = 1, . . . , N ,
to one, and the rest to zero.

We initialize the membership vectors randomly according to a uniform dis-
tribution. That way mi ∈ [0, 1] ∀i, even though the constraint of (10) is not
obeyed. We have observed that after the first iteration through the algorithm,
the constraint is always obeyed. Better initialization schemes may be used, al-
though in our experiments, the algorithm is very little affected by the actual
initialization used.

3.1 Kernel size and annealing scheme

In section 2, the same kernel size, σ, was used in the Parzen estimate of both
(all) the pdfs of the clusters. Obviously, to obtain a perfect pdf estimate for
each cluster, this assumption may not be valid. But since we don’t know which
data points belong to which cluster (since this is exactly what we are trying
to determine) it is impossible to obtain a separate kernel size for each cluster.



Given an input data set, the best we can do is to estimate the optimal kernel
size σ based on the whole data set. In section 4, we show that for the purpose
of clustering, using a single kernel size for each cluster gives promising results,
even though the underlying densities are not necessarily optimally estimated.

We will use Silverman’s rule-of-thumb to determine the optimal kernel size
with respect to a mean integrated square error criterion between the estimated
and the actual pdf. It is given by [12]

σopt = σX

{

4N−1(2d + 1)−1
}

1
d+4 , (18)

where d is the dimensionality of the data and σ2
X = d−1

∑

i ΣXii
and ΣXii

are
the diagonal elements of the sample covariance matrix.

The new CS-clustering algorithm that we propose can be operated in a fully
automatic mode by selecting the kernel size using (18), assuming that the correct
number of clusters, K, has been estimated beforehand. Hence no user-specified
parameters are needed. However, since the CS-cost function is non-convex, it
may exhibit more than one optimum. For many data sets, the algorithm may
always converge to the correct solution, but for other data sets, it may in some
cases converge to a local non-optimal solution.

The Parzen windowing makes it possible to incorporate a learning strategy
into the algorithm to help avoid local minima. The kernel size is allowed to be
annealed over a range of values around the optimal value. We start out with a
relatively large kernel size, which has the effect of smoothing out local minima
of the cost function. As the algorithm converges toward the global minimum
of the smoothed cost function, which is biased wrt. the location of the true
minimum, the kernel size is continuously annealed, such that the minimum of
the smoothed cost function gets more and more aligned with the true minimum.
By incorporating the annealing into the algorithm, we can be more certain that
the solution obtained is close to the desired solution.

3.2 Stochastic approximation

In this subsection we examine the stochastic approximation approach for calcu-
lating the gradient ∂J

∂mi
.

Let J = U
V

, where

U =
1

2

N,N
∑

i,j=1

(

1 −mT
i mj

)

Gij,2σ2I,

V =

√

√

√

√

K
∏

k=1

vk and vk =

N,N
∑

i,j=1

mikmjkGij,2σ2I. (19)

Hence
∂J

∂mi

=
V ∂U

∂mi

− U ∂V
∂mi

V 2
, (20)



∂U

∂mi

= −
N
∑

j=1

mjGij,2σ2I, (21)

∂V

∂mi

=
1

2

K
∑

k′=1

√

√

√

√

∏K
k 6=k′

k=1

vk

vk′

∂vk′

∂mi

, (22)

where ∂v
k′

∂mi

=
[

0 . . . 2
∑N

j=1 mjk′Gij,2σ2I . . . 0
]T

. Thus, only element number

k′ of this vector is nonzero.
The key point to note, is that we can calculate all quantities of interest in

(20), by determining (21), for ∀i. Since (21) is a sum over N elements, cal-
culating all these quantities is an O(N 2) procedure. An O(N2) algorithm may
become intractable for large data sets. To reduce complexity, we estimate (21) by
stochastically sampling the membership space, and utilize M randomly selected
membership vectors, and corresponding data points, to compute

−
M
∑

m=1

mmGim,2σ2I, (23)

as an approximation to (21). Hence, the overall complexity of the algorithm is
reduced to O(MN) for each iteration. We will show that we obtain very good
clustering results, even selecting M to be as small as 15% of N .

4 Clustering Experiments

In this section we report clustering results on two artificially created data sets,
and one real. In all experiments, we use (18) to estimate the kernel size with
respect to Parzen pdf estimation. The upper limit of the kernel size, which we
start out with in the annealing procedure, is chosen to be σupper = 2σopt, and the
lower limit is selected as σlower = 0.5σopt. The kernel size is linearly decreased
using a step size ∆σ = (σupper − σlower)/100. If convergence is not obtained
when reaching σlower, the algorithm continues using σlower as the kernel size.
These values are selected based on our experimental experience. It should be
said that the algorithm is quite robust with regard to these values. Also, the
value of M is always selected as 15% of the value of N (rounded to the nearest
integer). Our experiments show that even thought we only use a few randomly
chosen points to estimate the gradients, the results are as good as utilizing the
whole data set. The memberships are initialized as proposed in section 3, and
the constant ε = 0.05. In order to stop the algorithm, we examine the crisp
memberships every tenth iteration. If there is no change in crisp memberships
over these ten iterations, it is assumed that the algorithm has either converged
to a reasonable solution, or that the algorithm is trapped in a local minimum
from which it cannot escape. Hence, when the algorithm terminates, it has in
practice converged at least ten iterations earlier.
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(a) “half moons” data set

−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

(b) CS-clustering
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(d) SL-clustering

Fig. 1. The CS-clustering algorithm performs very well on this two-cluster data set,
where the boundary between the clusters is highly non-linear, and there are some
overlap.

In our first experiment, we consider the data set shown in Fig. 1 (a). A human
can observe that it contains two “half-moon”-shaped clusters with a highly non-
linear cluster boundary. There are totally N = 419 data patterns. The data set
is clustered 20 times using the CS-clustering algorithm. In absolutely all trials,
a result similar to that shown in Fig. 1 (b) is produced, after on average about
100 iterations. It can be seen that the clustering reveals the structure of the
data set. It should be said that a similar result is also obtained in 80% of the
trials using the fixed kernel mode, that is, the kernel is not annealed. Hence, in
fixed kernel mode, the algorithm converges to a local optimum in 20% of the
trials. For comparison, a typical result using the EMGMM algorithm is shown
in Fig. 1 (c). The EMGMM algorithm never obtaines the desired result, but
always produces a near-linear cluster boundary. The same is the case for the
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(a) Three clusters data set
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(b) CS-clustering
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(c) FCM-clustering
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(d) Normalized Cut clustering

Fig. 2. Data set consisting of three clusters used in second clustering experiment.

Fuzzy K-means algorithm, which produces a result similar to the EMGMM (not
shown). Also, the result using the single-link clustering algorithm [1] is shown
in Fig. 1 (d). It can be seen that it isolates a single point in one cluster, and
links together all the rest. This behavior is typical for the single-link algorithm
when the clusters have some overlap. Fortunately, the CS-clustering algorithm
shows no such tendency. Note that all the clustering methods we compare with
are popular and often used in practice.

In the second experiment, we cluster the data set shown in Fig. 2 (a). It
contains N = 819 data patterns. As can be observed, there seems to be three
clusters, but the boundaries are not very clear. Consistently, the CS-algorithm
produces a clustering result as shown in Fig. 2 (b), after on average about 120
iterations. The result clearly seems to be reasonable, considering the structure
of the data set. For comparison, the result obtained using fuzzy K-means is



shown in Fig. 2 (c). The linear cluster boundaries this method produces are
shown by the straight lines, obviously not capturing the non-linear nature of
the data. The result obtained using the EMGMM algorithm is quite similar,
and is not shown. The single-link algorithm fails completely on this kind of
data, because the data is noisy. We also include a comparison to a recent graph-
based clustering algorithm known as the Normalized Cut method [13]. The scale
parameter used in this method to define graph edge-weights was recommended
by the authors to be in the range 10 − 20% of the total range of the Euclidean
feature vector distances. We use 15%. The resulting clustering is shown in Fig. 2
(d). It is clearly an improvement over fuzzy K-means, but seems not to capture
the cluster structure to the same degree as our proposed method.

As a final experiment, the Wisconsin breast-cancer (WBC) data set [14] is
clustered. It consists of 683 data points (444 benign and 239 malignant). WBC is
a nine-dimensional dataset with features related to clump thickness, uniformity
of cell size, shape, and so forth. See [14] for details. On average, we obtained
a correct classification rate of 94.5%, which is comparable to the best results
reported for other clustering schemes on this data set.

5 Conclusions

In this paper, we have developed a clustering algorithm that is based on optimiz-
ing the Cauchy-Schwarz information theoretic distance measure between densi-
ties. The optimization is carried out using the Lagrange multiplier formalism,
and can be considered a constrained gradient descent search. The gradients are
stochastically approximated, reducing the complexity from O(N 2) to O(MN),
M � N . We have shown that the algorithm performs well on several data sets,
and that it is capable of clustering data sets where the cluster boundaries are
highly non-linear. We attribute this property to the information theoretic metric
we use, combined with non-parametric Parzen density estimation.

Jenssen et al. [15] in fact discovered a relationship between the Cauchy-
Schwarz pdf distance and the graph theoretic cut. This means that our proposed
method can also be considered to belong to the family of graph-based clustering
cost functions, and it is hence related to the Normalized Cut method and spectral
clustering. However, in our method, there is no need to compute eigenvectors,
which is known to be a computationally demanding procedure. In future work,
we will further pursue this link between our information theoretic approach and
graph theory. See also [16] for comments on this link.
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