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 Abstract – Modern brain computer interface (BCI) 
applications use information obtained from the user's 
electroencephalogram (EEG) to estimate the mental 
states. Selecting an optimal subset of the EEG channels 
instead of using all of them is especially important for 
ambulatory EEG where the user is mobile due to 
reduced data communication and computational load 
requirements. In addition, elimination of irrelevant 
sensors improves the robustness of the classification 
system by reducing dimensionality. In this paper, we 
propose a filter approach for EEG channel selection 
using mutual information (MI) maximization. This 
method ranks the EEG channels, such that the MI 
between the selected sensors and class labels is 
maximized. This selection criterion is known to reduce 
classification error. We employ a computationally 
efficient approach for MI estimation and EEG channel 
ranking. This approach is illustrated on EEG data 
recorded from three subjects performing two mental 
tasks. Experiment results show that the proposed 
approach works well and the position of the selected 
channels using the proposed method is consistent with 
the expected cortical areas for the mental tasks.  
 Keywords – EEG channel selection, independent 
component analysis, mutual information, brain 
computer interface 
 

I. INTRODUCTION 

 Brain computer interface (BCI) is a system that can 
estimate user intent directly from brain activity in real time. 
The goal of BCIs is to enhance communication between 
human users and computers, as well as to enable disabled 
people utilize such systems. This technology requires the 
ability to accurately and rapidly recognize the mental state 
from brain signals. Although BCIs based on many 
measurement modalities are possible, research focus is 
mainly on the use of noninvasive electroencephalogram 
(EEG), which has the added advantage of convenience and 
relatively low cost. However, EEG signals recorded in the 
laboratory environment are prominently different from the 
EEG signals recorded in the real world in the following 
aspects: in the laboratory (1) the experimental setup is 
controlled facilitating better performances, (2) various 
precautions to improve signal quality can be implemented, 
(3) large-scale data collection, analysis, and signal 
processing hardware and software can be utilized. For 
practical applications of this technology, these artificial 
environmental and design restrictions must be relaxed, since 

light-weight low-power implementations impose size and 
complexity reduction requirements. In real world 
applications, EEG signals could be very noisy and 
contaminated by various motion artifacts. All these factors 
make it extremely difficult to estimate the cognitive or 
mental state from recorded EEG signals, hence limit the 
application of BCIs. 
 Many methods have been successfully used to reduce 
the noise in EEG signals, such as adaptive noise/artifact 
cancellation. However, these methods have limit capabilities 
for classification-relevant preprocessing. We could partly 
solve the problem of distractive features and artifacts by 
eliminating the irrelevant and redundant information in the 
features, and in turn increase the robustness of the 
classification system. Feature extraction methods can 
greatly affect signal-to-noise ratio. Good methods enhance 
the signal and reduce central nervous system (CNS) and 
non-CNS noise [1]. There are two aspects for feature 
extraction: selecting the most salient EEG channels, while 
eliminating the irrelevant and redundant EEG channels and 
extracting time/frequency characteristics useful for 
classification from the selected EEG channels. An important 
reason for selecting EEG channels is that in some BCI 
applications, the users are required to execute some tasks 
while moving, which means a wireless or reduced-size EEG 
collection, recording, and preprocessing equipment must be 
employed. The capacity of the wireless channel and the real-
time data processing requirement make it impossible to 
transmit and process all of the EEG channels. Therefore, 
selecting the most salient EEG channels becomes a critical 
problem in BCI applications. In this paper, we will focus on 
the first aspect and introduce a salient EEG channel 
selection method using MI maximization. 
 EEG channel selection can be treated as a feature 
selection problem. However, unlike usual feature selection, 
it is necessary to treat all features coming from a channel 
together [2], because each EEG channel may contain more 
than one feature (e.g., different frequency bands of activity). 
Many methods have been proposed to solve this problem, 
such as genetic algorithms and support vector machines [2-
4]. The feature selection methods found in the literature can 
be characterized as wrapper or filter. In the wrapper 
approach, feature selection is coupled with a specific 
classifier, resulting in an inflexible design, as well as 
increased off-line computational burden. On the contrary, 
the filter approach, which selects features by optimizing 
some criterion is independent of the classifier, hence is more 
flexible. In this paper, we take the filter approach and use 



the MI between features and class labels as the criterion to 
rank EEG channels in descending order according to their 
contribution to class discriminability. This criterion is 
motivated by Fano’s and Hellman & Raviv’s bounds, which 
demonstrate that the classification error is bounded from 
above by this MI [5,6]. The proposed method has the 
following advantages: (1) it is independent of the following 
classifier topology; (2) it is computationally effective and 
efficient since fast ICA and entropy estimation routines are 
employed; (3) sequential channel evaluation strategy 
eliminates the combinatorial explosion problem (at the cost 
of possible sub-optimality in degenerate situations). 
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Fig. 1 Linear ICA transformation and mutual information
estimation. 

 The proposed approach is applied to EEG-based BCIs 
in the context of cognitive augmentation. The experimental 
results show that this method can greatly improve the 
classification performance compared to using EEG channels 
selected based on physiological experience in the BCI 
literature. Furthermore, the position of the selected channels 
is highly consistent with the expected cortical areas in the 
mental tasks. 
 

II. EEG DATA COLLECTION 

Experimental Setup and Mental Tasks 
 EEG data is collected while three subjects S1-S3 execute 
two mental tasks, Larson and n-back [7-9]. In the Larson 
task, the subjects are required to maintain a mental count 
according to the presented configuration of images on the 
monitor. The combination of mental activities during this 
task includes Attention, Encoding, Rehearsal, Retrieval, and 
Match. The complexity of the task is divided into two 
classes, low and high workloads, which depend on the inter-
stimuli interval. In the n-back task, subjects are required to 
match the letter in either spatial location or verbal identity in 
the previous trials. The easy task only requires matching any 
of the previous trials, involving the combination of mental 
activities include Attention, and Match, which is defined as 
low workload. The difficult task requires matching the third 
previous trials, and involves a complex combination of 
metal activities that includes Attention, Encoding, Rehearsal, 
Retrieval, and Match, which is defined as high workload.  
 EEG data is collected using a BioSemi Active Two 
system (http://www.biosemi.com) using a 30 channel EEG 
cap and eye electrodes. Vertical and horizontal eye 
movements and blinks were recorded with electrodes below 
and lateral to the left eye. EEG is sampled and recorded at 
256Hz from 30 channels.  
Data processing 
 EEG signals are pre-processed to remove eye blinks 
using an adaptive linear filter based on the Widrow-Hoff 
training rule (LMS) [10]. Information from the VEOGLB 
ocular reference channel was used as the noise reference 
source for the adaptive ocular filter. DC drifts were removed 
using high pass filters (0.5Hz cut-off). A band pass filter 
(between 2Hz and 50Hz) was also employed, as this interval 
is generally associated with cognitive activity. The power 
spectral density (PSD) of the EEG signals, estimated using 
the Welch method [11] with 50%-overlapping 1-second 
windows, is integrated over 5 frequency bands: 4-8Hz 

(theta), 8-12Hz (alpha), 12-16Hz (low beta), 16-30Hz (high 
beta), 30-44Hz (gamma).  These bands, sampled every 0.25 
seconds, are used as the basic features for cognitive 
classification. The particular selection of the frequency 
bands is based on well-established interpretations of EEG 
signals in prior cognitive and clinical contexts [12].  
 

III. METHOD 

Mutual Information Estimation 
 Our goal is to find an optimal subset of EEG channels 
that minimizes the classification error, which is equivalent 
to maximizing the MI between input features and class 
labels: 
  (1) );,,(max 1 cxxI idi K
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Where x is the feature vector, c is the class label, and d is 
the number of EEG channels retained. However, since 
features are generally mutually dependent, it is very difficult 
to estimate MI directly from the joint entropy of higher 
dimensional random variables. Furthermore, the pdf 
estimation of n dimensional random vector typically 
requires a large number of data samples (exponential in the 
dimensionality). This makes it impractical to estimate the 
joint pdf of higher dimensional random vectors. 
 An intuitive and efficient method to solve this problem 
is to use an indirect way: linear ICA transformation plus 
one-dimensional entropy estimation. The block diagram of 
this method is shown in Figure 1. This method exploits the 
two facts: 1) linear ICA transformation does not change the 
mutual information; 2) if the components of the random 
vector are independent, the joint and joint-conditional 
entropies become the sum of marginal and marginal-
conditional entropies, 1 as shown in (2) and (3) 
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where x is the original EEG channels, y is the transformed 
feature vector, d is the number of EEG channels being 
considered, j is the number of features for each EEG 
channel, and c is the class label.  
 Many effective and efficient algorithms based on a 
variety of assumptions, including maximization of non-
Gaussianity and minimization of mutual information, exist 
                                                 
1   Here we assume that the same ICA transformation achieves 
independence in the overall conditional distributions simultaneously.  



to solve the ICA problem [13-15]. Those utilizing fourth 
order cumulants could be compactly formulated in the form 
of a generalized eigen-decomposition problem that gives the 
ICA solution in an analytical form [16]. 
 According to this formulation, one possible assumption 
set that leads to an ICA solution utilizes the fourth-order 
cumulants. Under this set of assumptions, the separation 
matrix W is the solution to the following generalized eigen-
decomposition problem: 
  (4) WΛQWR xx =
where Rx is the covariance matrix and Qx is the cumulant 
matrix estimated using sample averages: Qx=E[xTxxxT]-
Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the estimates for these 
matrices, the ICA solution can be easily determined using 
efficient generalized eigendecomposition algorithms (or 
using the eig command in Matlab). 
 There exist many entropy estimators in the literature for 
single-dimensional variables. Here, we use an estimator 
based on sample-spacing, which stems from order statistics 
[13]. This estimator is selected because of its consistency, 
rapid asymptotic convergence, and simplicity. Consider a 
random variable Y. Given a set of iid samples of Y 
{y1,…,yN}, first these samples are sorted in increasing order 
such that y(1)≤…≤y(N). The m-spacing entropy estimator is 
given by: 
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The selection of the parameter m is determined by a bias-
variance trade-off and typically, Nm = .  
 
Salient EEG channel Ranking 
 Using the proposed MI estimation method described 
above, the salient EEG channel ranking can be achieved in a 
recurrent manner: 

A. E
stimating the MI between all features in one EEG 
channel and class labels. Repeat this process for all 
channels, find the channel with maximum MI, and 
mark it as opt-sub1 (optimal subset of 1 channel).  

B. P
ick one in the remaining EEG channels, combine it 
with opt-sub1 to form sub2 (subset of 2 channels). 
Estimate MI between all features in sub2 and class 
labels. Repeat this process for all remaining 
channels, find the channel with maximum MI, and 
mark it as opt-sub2. 

C. R
epeat Step B by increasing one channel at a time, 
until all EEG channels are ranked in the sense of 
MI maximization. 

 This procedure results in an ordering of EEG channels 
such that the first d channels have maximal MI with class 
labels (approximations include linear ICA induces 
independence and no degenerate feature pairs such as the 
XOR problem exist). The choice of d to be used in the 
application is dependent on the requirement for 
classification performance and computational cost. In our 

experiments, we typically observed that only up to 10 of the 
30 channels contribute novel discriminative information, 
while the other 20 do not increase MI.  
 Using this search strategy, the computational 
complexity is (n+1)n/2 (n is the total number of EEG 
channels) instead of the 2n of exhaustive evaluation. 
Another advantage of this method is that, since the EEG 
ranking is independent of the classifier, it is computationally 
efficient (it does not require repeated classifier training) and 
it does not require re-ranking when we use another classifier, 
bringing design flexibility to the table. The pseudocode of 
the proposed EEG channel selection method is shown in 
Table. 1. 

Table 1. Pseudocode for the process of channel selection. 
(n: number of EEG channels, d: number of ranked 
channels, x: feature space, c: class labels) 

 
d=1;  
x=[ ]; 
while (d<n) 

for i=1 to n-d+1 
x=[x, xi]; 
calculate I(x;c); 

end 
x=maxi(I(x;c)); 
d=d+1; 

end 
 

IV. EXPERIMENTS AND RESULTS 

 As mentioned in part II, we have collected EEG data in 
6 combinations, corresponding to one of the two mental 
tasks for three subjects. Each case consists of about 3000 
data samples in a 150 dimensional feature space (30 EEG 
channels × 5 frequency bands) with two classes: low and 
high workloads. We applied the proposed EEG channel 
selection approach on these data files. It is well known that 
the optimal EEG channels vary for different mental tasks 
and different subjects. We first applied the approach on 
individual subject-task combinations, and obtained 
specialized EEG channel rankings, called Local n (n is the 
number of the EEG channels). As an evaluation for the 
ability to select optimal channels across tasks and subjects, 
we also mixed all data files together and applied this 
approach to get a new ranking, called Global n. An instance 
of Local 10 and Global 10 EEG channels are shown in 
Table 2. The 7 channels from physiological experience Phy 
7 are also listed as a reference [17]. 
 To validate the proposed method, we employed a 
committee of 3 classifiers: GMM, KNN, and KDE, together 
with majority vote and decision fusion on the selected EEG 
channels [18]. We divided each case into five parts, using 
four parts as the training set to train the classifiers, and the 
remaining one part as the testing set. Using the jackknife 
approach, we rotated the training data and testing data, and 
combined the results together as our final classification 
results. The confusion matrix is estimated and the correct 
classification rate can be calculated by weighted sum of the 
main diagonal entries of the confusion matrix. The 
classification rates for different data files under different 



subset of EEG channels are shown in Table 3. The 
arithmetic average of 6 correct classification rates within 
one selection of EEG channels is also listed as an overall 
channel selection evaluation. 
 Table 2 shows that the optimal channels are different 
across tasks and subjects, nevertheless, there exist common 
channels among these subsets. The classification results in 
Table 3 clearly show that the proposed method for channel 
selection is much superior to literature-based selection. The 
average classification rate also shows that the Local subsets 
are superior to Global subsets as expected, since they are 
optimal for that particular case. There is a trade-off between 
the classification performance and the computational cost in 
selecting the number of the EEG channels. Furthermore, 
more EEG channels might also introduce irrelevant 
information (after 10 channels in this case), which will 
compromise the robustness of the classification system. 
 
Table 2. Optimal EEG channels illustration. Phy 7: 7 EEG 
channels from physiological experience; Local 10: 10 best EEG 
channels evaluated from individual data file; Global 10: 10 best 
EEG channels evaluated from all data files 

Phy 7 Cz, P3, P4, Pz, O2, PO4, F7 
Larson CP5, Fp2, FC5, Fp1, C4, P4, F7, AF3, P7, FC6 S1 n-back AF3, FC5, Fp1, Fp2, F8, F7, FC6, O1, CP6, P4 
Larson Fp2, O1, AF4, F7, C3, PO3, FC6, CP2, C4, Pz S2 n-back C4, O1, F8, Fz, F3, FC5, FC1, C3, Cz, CP1 
Larson Fp2, F8, F7, FC5, FC6, AF3, C3, F4, P4, AF4 

Local 
10 

S3 n-back CP5, F8, C4, FC6, Fp2, FC5, P3, AF4, C3, P7 
Global 10 Fp2, FC5, O1, F3, FC6, F8, F7, AF3, O2, CP6 

 
Table 3 Classification rate for three subjects: S1, S2 and S3, in two 
mental tasks: Larson and n-back, for different subsets of EEG 
channels. Average is arithmetic average of the 6 classification rate 
for a particular EEG channel subset. 

  Phy 7 7 Local 10 Local 7 Global 10 Global 
Larson 0.74 0.90 0.86 0.84 0.78 S1 n-back 0.78 0.89 0.87 0.85 0.83 
Larson 0.64 0.80 0.80 0.75 0.77 S2 n-back 0.73 0.89 0.89 0.88 0.86 
Larson 0.48 0.71 0.76 0.76 0.73 S3 n-back 0.55 0.75 0.80 0.80 0.78 

Average 0.65 0.82 0.83 0.81 0.79 
 

V. CONCLUSION 

 In this paper, we presented an MI maximization method 
for EEG channel selection in BCI application. By exploiting 
the facts that MI does not change due to the linear ICA 
transformation, and that the joint entropy of the independent 
components can be estimated by summing the marginal 
entropies of each component, we can estimate the MI 
between the EEG channels and the class labels in an 
efficient way. A sequential incremental ranking strategy is 
also applied to reduce the number of total MI evaluations. 
Since the proposed feature selection method is a filter 
approach, it is independent of the classifiers, thus it does not 
require re-ranking the channels when using other classifiers. 
 Experiments results shows that this method yields 
superior classification results compared with the results for 
channels selected from physiology experience. Although 
this method does not use any prior knowledge about the 
brain activities, the selected EEG sites exhibit high 

consistency with expected cortical areas for these mental 
tasks: most channels are selected from the frontal sites, 
which are generally associated with working memory tasks. 
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