
Sensor-Based Cognitive State Assessment in a Mobile Environment 
 

Santosh Mathan, Stephen Whitlow, Natalia Mazaeva 
 

 
Abstract 
 
Inferring cognitive state from non invasive neurophysiological sensors is a challenging task even in pristine 
laboratory environments. Artifacts ranging from eye blinks, to muscle artifacts and electrical line noise can mask 
electrical signals associated with cognitive functions. These concerns are particularly pronounced in the context of 
the Honeywell team’s ongoing efforts to realize neurophysiologically driven adaptive automation for the dismounted 
ambulatory soldier.  Besides the typical sources of signal contamination, the Honeywell team has to deal with the 
effects of artifacts induced by shock, rubbing cables and gross muscle movement.  This paper presents the 
Honeywell team’s efforts to make reliable sensor based cognitive state assessments given the constraints just cited. 
Cognitive state classification results suggest that it is feasible to classify cognitive state in ambulatory, military-
relevant task contexts. 
 
 
1 Introduction 
 
DARPA’s (Defense Advanced Research Projects Agency) Augmented Cognition program is an 
effort aimed at tailoring computer based assistance to a user’s cognitive state. Technologies that 
have matured under this program promise to foster a fundamentally new type of human computer 
interaction in complex task domains. Currently, computer based assistance in many challenging 
contexts takes the form of rigidly automated systems (Sarter, Woods, & Billings, 1997). These 
systems largely relegate the human to the role of a passive observer and occasionally force the 
human to take over in extremely demanding task conditions. Computer based assistance 
conceived by the AugCog program is of a more compliant nature, where the human is actively 
engaged in the task at all times. Automation merely serves to help users cope with the most 
difficult of circumstances (c.f. Norman, 1990). This type of mixed initiative interaction, offers 
the promise of realizing the best attributes of both humans and machines in the service of 
performing complex tasks.  
 
This paper describes Honeywell’s efforts in conjunction with the Augmented Cognition program.  
The Honeywell Augmented Cognition team focuses on the dismounted Future Force Warrior 
(FFW). FFW is a component of the US Army’s Advanced Technology Development (ATD) 
program. A critical element of the FFW program is a reliance on networked communications and 
high density information exchange. Such an infrastructure is expected to increase situational 
awareness at every level of the operational hierarchy. It is hoped that an information technology 
based transformation of the military will facilitate better individual and collaborative decision 
making at every level. However, effective decision making on the basis of broad access to 
mission relevant information is constrained by the limits of the human information processing 
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system. The goal of the Honeywell Augmented Cognition team is to use physiological and 
neurophysiological sensors to detect occasions when cognitive resources may be inadequate to 
cope with mission relevant demands. Efforts of the Honeywell team focus on ways to leverage 
automation to effectively manage information under difficult task conditions. To the best of our 
knowledge, the Honeywell team’s efforts represent one of the first attempts to create a wearable 
cognitive state classification system in the context of a fully ambulatory individual. A major 
factor limiting such applications is the potential for artifacts induced by gross body movements 
to overwhelm task related neurophysiological signals.  
 
Realizing the vision of the AugCog program in the context of an ambulatory soldier is 
constrained by several challenges. First, as Schmorrow and Kruse (2002) have noted, processing 
and analysis of neurophysiological data is largely conducted off-line by researchers and 
practitioners. However, in order for Augmented Cognition technologies to work in practical 
settings, effective and computationally efficient artifact reduction and signal processing solutions 
are necessary.  Second, inferring the cognitive state of users demands pattern recognition 
solutions that are robust to noise and the inherent non stationarity in neurophysiological signals. 
Third, it requires the development of means to collect reliable neurophysiological data outside 
the laboratory. Hence, compact and robust form factors associated with neurophysiological 
sensors and processors are a matter of critical concern. Users should be able to move around 
freely. 
 
In the following pages we describe a system designed to facilitate cognitive state classification in 
mobile environments. We describe a hardware configuration that allows neurophysiological data 
to be collected and processed in a body-worn wireless platform. We provide an overview of 
software components used for signal processing and artifact reduction.  We highlight our 
classification approach. Additionally, we present results that show it is feasible to discriminate 
among workload levels on the basis of neurophysiological sensors in ambulatory contexts.  
 
2 Hardware Configuration 
 
The wireless sensor suite employed by Honeywell is assembled using a variety of off-the-shelf 
components. EEG data is collected using the BioSemi Active Two system using a 32 channel 
EEG cap and eye electrodes. This system integrates an amplifier with an Ag-AgCl electrode – 
this affords extremely low noise measurements without any skin preparation. The system also 
incorporates a wearable Arousal Meter. The Arousal Meter, developed by Clemson University, 
senses a subject’s ECG signals and outputs inter-beat interval data in conjunction with a derived 
measure of a subject’s cognitive arousal. Information regarding physical context is obtained 
using a combination of a Dead Reckoning Module (DRM) manufactured by Point Park Research 
and an Inertia Cube manufactured by InterSense.  The DRM unit is a self contained navigation 
component that fuses information from several internal sensors to determine displacement from a 
specific geographical position.  The internal sensors consist of a thermometer, barometer, 
magnetometer, accelerometer, gyroscope, and GPS receiver.  The system is specifically designed 
to work with intermittent GPS signals. The InertiaCube provides information about head 
orientation about the head’s pitch, roll, and yaw axes.  
 



Information from the sensors described above is processed on a body worn laptop. The sensors 
are connected to the laptop via a combination USB, serial port and Bluetooth interfaces. The 
sensor electronics and the laptop are mounted in a backpack worn by the subject (Figure 1).  
Sensor data is collected and processed on the laptop computer during the experiment.  A base 
station computer controls the experiment and communicates with the body-worn laptop 
computer via an 802.11 wireless network. 
 
   
3 Signal Processing Software 
 
The cognitive state classification efforts reported here rely primarily on EEG data. As mentioned 
earlier, the sensor monitoring equipment consists of a BioSemi Active Two EEG system with 32 
electrodes. Vertical and horizontal eye movements and blinks are recorded with electrodes below 
and lateral to the left eye. All channels reference the right mastoid. EEG is sampled at 256Hz 
from 7 channels (CZ, P3, P4, PZ, O2, P04, F7) while the subject is performing tasks. These sites 
were selected based on a saliency analysis on EEG collected from various subjects performing 
cognitive test battery tasks (Russell & Gustafson, 2001). EEG signals are pre-processed to 
remove eye blinks using an adaptive linear filter based on the Widrow-Hoff training rule 
(Widrow & Hoff, 1960). Information from the VEOGLB ocular reference channel was used as 
the noise reference source for the adaptive ocular filter. DC drifts were removed using high pass 

Figure 1: Body worn sensor suite and signal processing system 



filters (0.5Hz cut-off). A band pass filter (between 2Hz and 50Hz) is also employed, as this 
interval is generally associated with cognitive activity. The power spectral density (PSD) of the 
EEG signals is estimated using the Welch method (Welch, 1967). The PSD process uses 1-
second sliding windows with 50% overlap.  PSD estimates are integrated over five frequency 
bands: 
 
4-8Hz (theta), 8-12Hz (alpha), 12-16Hz (low beta), 16-30Hz (high beta), 30-44Hz (gamma).  
These bands, sampled every 0.1 seconds, are used as the basic input features for cognitive 
classification. The particular selection of the frequency bands is based on well-established 
interpretations of EEG signals in prior cognitive and clinical (e.g. Gevins, Smith, McEvoy & Yu, 
1997) contexts. The overall schematic diagram of the signal processing system is shown in 
Figure 2. 
 
4 Cognitive State Classification System 
 
Estimates of spectral power form the input features to a pattern classification system. The 
classification system uses parametric and non parametric techniques to asses the likely cognitive 
state on the basis of spectral features; i.e. estimate p(cognitive state | spectral features). The 
classification process relies on probability density estimates derived from a set of spectral 

Figure 2: Signal processing system 



samples. These spectral samples are gathered in conjunction with tasks representative of the 
eventual task environment. It is assumed that these sample patterns are representative of the 
population of spectral patterns one would expect in the performance environment. The 
classification system uses three distinct classification approaches: K nearest neighbor (KNN), 
Parzen Windows, and Gaussian Mixture Models (Figure 3).  We describe each of these 
components next.  
 
 
 
 

 
4.1 Gaussian Mixture Models 
 
Gaussian Mixture models provide a way to model the probability density functions of spectral 
features associated with each cognitive state. This is accomplished using a superposition of 
Gaussian kernels. The unknown probability density associated with each class or cognitive state 
is approximated by a weighted linear combination of Gaussian density components. Given, an 
appropriate number of Gaussian components, and appropriately chosen component parameters 
(mean and covariance matrix associated with each component), a Gaussian mixture model can 
model any probability density to an arbitrary degree of precision.  
 
The parameters associated with component Gaussians are iteratively determined using the 
Expectation Maximization algorithm (Dempster, Laird, and Rubin, 1977). Once the Gaussian 
parameters have been initialized, the system iterates through a two step procedure for each 
sample associated with each class. In the first step (expectation step), the system computes the 
probability of a particular training sample belonging to a particular class based on current model 

Figure 3: Classification system 



parameters (posteriori probability). In the maximization step, the model parameters are adjusted 
in the direction of increasing the class membership likelihood.  
Once probability density functions associated with each cognitive state have been generated, it 
becomes possible to classify individual spectral samples. Each spectral vector is attributed to a 
class that has the highest posterior probability of representing it. Posterior probabilities are 
computed using Bayes rule. For example, Figure 4 shows the probability density functions  
associated with three distinct classes. These probability densities are estimated using three 
Gaussians. For example, very high values of the data point x are most likely to come from class 
3, very low values of x are most likely to come from Class 1.    
 
4.2 K Nearest Neighbor 
 
The K-nearest neighbor approach is a non parametric technique that makes no assumption about 
the form of the probability densities underlying a particular set of data. Given a particular sample 

Figure 4: Gaussian mixture models 

Figure 5: K nearest neighbor 



x, the classification process identifies k samples whose features come closest (as assessed by 
Euclidian or Mahalanobis distance metrics) to the features represented in x. The sample x would 
be assigned the modal class of the nearest k neighbors. For example, consider the data point 
represented by the question mark in Figure 5. Based on k = 5, it would be assigned the label 
associated with the most common class category of it’s 5 nearest neighbors: 1. It can be shown 
that if k is large, but the overall cell small, that the classifier will approach the best possible 
classification (Bayes rate) (Duda, Hart, & Stork, 2000) 
 
4.3 Parzen Windows 
 
Parzen windows (Parzen, 1967) are a generalization of the k-nearest neighbor technique. Instead 
of choosing the nearest neighbors and assigning a sample x with the label associated with the 
modal class of its neighbors, one can weight each vote by using a kernel function. With Gaussian 
kernels, the weight decreases exponentially with the square of the distance. As a consequence, 
far away points become insignificant. Kernel volumes constrain the region within which 
neighbors are considered. Consequently, Parzen windows may be a better choice when there are 
large differences in the variability associated with each class.  The data point shown in Figure 4, 
will be assigned to the dominant class in it’s immediate vicinity. 

 
 
4.4 Composite Classifier 
 
These statistical classification techniques were chosen over multi-layer neural networks because 
they require minimal training time. KNN and Parzen Windows require no training, whereas the 
EM algorithm used to generate GMMs, converges relatively quickly. KNN and Parzen Window 
approaches require all training patterns to be held in memory. Every new feature vector has to be 
compared to each of these patterns. However, despite the computational cost of these 
comparisons at run time, the system was able to output classification decisions well within real-
time constraints.  
 

Figure 6: Parzen windows 



The composite classification system regards the output from each classifier as a vote for the 
likely cognitive state. The majority vote of the three component classifiers forms the output of 
the composite classifier. When there is no majority agreement, the Parzen window decision is 
selected. A classification decision is output at a rate of 10Hz.  Outputs from the composite 
classifier are passed through a modal filter before an assessment of cognitive state is output by 
the classification system. Modal filtering serves to make the cognitive state assessment process 
more robust to undesirable fluctuations in the underlying EEG signal. Modal filtering is done 
over a sliding 2 second window with the assumption that cognitive state remains stable over that 
period of time.  
  
5 Results 
 
The system described here was empirically assessed. The experiment compared classification 
accuracy across three workload levels in two mobility conditions: stationary and walking.  The 
tasks in the stationary case were: relaxed (waiting for orders), communicate (getting orders from 
base via radio communication), and count (starting from 100 and decreasing by 7). Tasks in the 
mobile case were: navigate (walking to a designated target), navigate and visual search (walking 
while looking for snipers), and navigate and communicate (receiving and giving mission status 
reports). The subject wore the sensor suite described earlier in this paper in both mobility 
conditions. EEG was collected as subjects performed each of the tasks mentioned above.  
 
After the preprocessing and PSD feature extraction stages, approximately 3000 samples were 
obtained. One third of this data was used for training the classifiers, and the remaining two-thirds 
were used for testing. Classification results for both stationary and mobile cases are presented in 
the confusion matrix shown in Figure-7. As the diagonals associated with each confusion matrix 
indicate, classification accuracy was well over 90%. The results presented here are representative 
of outcomes replicated with a large number of independent data sets and cognitive tasks.  
 
 The cognitive state estimator described here was assessed in the context of a real-time, closed-
loop, adaptive performance enhancement system. The system optimally scheduled 
communication traffic to the subject based on cognitive state assessments. Experiments 
conducted demonstrate that the assistance offered by this interface improves task-related 
performance greatly. For instance, the scheduling of communication based on the cognitive load 
assessment resulted in 100% improvement in message comprehension and 125% improvement in 
situation awareness.  

Figure 7: Probability of classifying test patterns correctly. Higher numbers on the diagonal of each matrix 
correspond to better performance.



6 Conclusion 
  
The ability to detect and to classify the cognitive state of the operator is a prerequisite to 
successful augmentation of a user’s task performance. However, there are numerous technical 
challenges that limit classification accuracy in the context of an ambulatory soldier. This paper 
describes hardware and software components that were used to gather, filter, and classify 
neurophysiological signals. Classification results show that it is indeed feasible to accurately 
classify the cognitive state of an ambulatory individual.   
 
While these results are encouraging, it is important to emphasize that these results were obtained 
in conjunction with training and testing data obtained from the same experimental session. We 
have observed classification accuracy in the 60% to 70% range when training and testing data 
are drawn from different experimental sessions. Long term non stationarity in EEG limits 
classification accuracy across experimental sessions. However, it is important to note that EEG is 
only one component in the cognitive state assessment suite that the Honeywell team is 
developing. We expect information from sources such as fNIR (functional near infra red 
imaging), accelerometers, and context modeling to complement EEG based cognitive state 
assessments.  We expect the complementary use of these components to compensate for the 
variability and unpredictability in operational environments.  
 
 
Acknowledgments 
 
The authors would like to acknowledge the technical contributions of Jim Carciofini, Michael 
Dorneich, and Jeff Rye. This paper/research was supported by contract number DAAD-16-03-C-
0054 funded through DARPA and the U.S. Army Natick Soldier Center. LCDR Dylan 
Schmorrow serves as the Program Manager of the DARPA Augmented Cognition program and 
Mr. Henry Girolamo is the DARPA Agent. The opinions expressed herein are those of the 
authors and do not necessarily reflect the views of DARPA or the U.S. Army Natick Soldier 
Center.  
 
 
References: 
 
C.A. Russell, S.G. Gustafson, “Selecting Salient Features of Psychophysiological Measures,” Air Force Research 

Laboratory Technical Report (AFRL-HE-WP-TR-2001-0136), 2001.  
 
A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” 

Journal of the Royal Statistical Society, vol. 39, pp. 1-38, 1977.  
 
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley, 2000.  
 
A. Gevins, M.E. Smith, L.McEvoy, D. Yu, “High Resolution EEG Mapping of Cortical Activation Related to 

Working Memory: Effects of Task Difficulty, Type of Processing, and Practice,” Cerebral Cortex, vol. 7, pp. 
374-385, 1997.  

 



Norman DA. The problem with "automation": inappropriate feedback and interaction, not "over-automation". 
Philosophical Transaction of the Royal Society of London, 1990; B327: 585-593. 

 
E. Parzen, “On Estimation of a Probability Density Function and Mode”, in Time Series Analysis Papers, Holden-

Day, Inc., San Diego, California, 1967.  
 
Sarter, N.B., Woods, D.D., and Billings, C.E. (1997). Automation Surprises. In G. Salvendy (Ed.), Handbook of 

Human Factors and Ergonomics (2nd edition) (pp. 1926-1943). New York, NY: Wiley. 
 
Schmorrow, D.D., & Kruse, A.A., 2002. Improving human performance throughadvanced cognitive system 

technology. In: Proceedings of the Interservice/Industry Training, Simulation and Education Conference 
(I/ITSEC'02), Orlando, FL. 

 
B. Widrow and M. E. Hoff, "Adaptive switching circuits," in IRE WESCON Convention Record, 1960, pp. 96--104. 
 
P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time 

Averaging Over Short Modified Periodograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 
2, pp. 70-73, 1967.  


