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ABSTRACT

In this paper the problem of detecting a known waveform
in noise is solved in a high dimensional transformed (fea-
ture) space. The proposed test statistic is the inner prod-
uct between two hyperplanes constructed using the nonlin-
early transformed template and observations, which becomes
a simple quadratic form after applying thekernel trick. To
obtain the optimal projections for the template and the obser-
vations we maximize the Fisher discriminant analysis (FDA)
criterion in the feature space. Under the white Gaussian noise
assumption, closed-form expressions for the means and the
variances under each hypothesis are obtained, and an iter-
ative procedure to get the optimal projections is proposed.
Interestingly, the analysis of the results shows that the opti-
mal projections preserve the information about the original
waveform shape. This can be used to simplify the optimiza-
tion procedure since one of the projectors can be fixed in
advance. Some simulation results indicate that the proposed
test statistic achieves the optimal performance of the linear
matched filter under Gaussian noise, but shows an increased
robustness against impulsive noise distributions.

1. INTRODUCTION

The detection of a known waveform in noise is a fundamen-
tal problem with a wide range of applications such as com-
munications, radar and biomedical signal processing [1], [2].
Under the assumption of additive Gaussian noise, the opti-
mal solution is given by the matched filter, which is the lin-
ear filter that maximizes the signal-to-noise ratio at its out-
put. However, when the interference is non-Gaussian the
optimum detector is, in general, nonlinear and depends on
the noise distribution [3]. In addition, if the waveform suf-
fers some nonlinear distortion the matched filter is not op-
timal anymore. In this situation a test statistic that extracts
all the higher order moments, such as the recently proposed
quadratic mutual information (QMI) [4], outperforms the lin-
ear matched filter.

In this paper we describe a new solution for matched fil-
tering in a feature (transformed) space. The idea of using a
nonlinear transformation to a high dimensional feature space
where a solution can be found was properly motivated by sta-
tistical learning theory [5], and has been successfully applied
to a number of applications ranging from face identification,
bioinformatics, marketing, data mining and communications
[6], [7].
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In feature space, a discriminant test statistic is formed as
the inner product between two hyperplanes constructed us-
ing the nonlinearly transformed template and observations,
respectively. After applying thekernel trickthe test statistic
turns out to be a simple quadratic form. The optimal linear
projections are obtained by maximizing the Fisher discrimi-
nant analysis (FDA) criterion [8]. Under the Gaussian noise
assumption it is possible to derive closed-form expressions
for the means and variances under each hypothesis, then an
iterative technique to maximize the kernel FDA (K-FDA) cri-
terion is applied.

Interestingly, the analysis of the results show that the op-
timal projections obtained through FDA preserve in the fea-
ture space the temporal structure of the waveform, which is a
crucial information for this problem. An additional advan-
tage of solving this type of problems in the feature space
induced by the reproducing Gaussian kernel is an increased
robustness against impulse noise.

2. DETECTION OF A KNOWN WAVEFORM IN THE
FEATURE SPACE

We consider the problem of detecting a known deterministic
signalsk, corrupted by a zero-mean white additive noisenk
with pdf fN(n), i.e., we have the following binary hypothesis
testing problem [1]

H1 : rk = sk +nk, k = 1, · · ·N
H0 : rk = sk, k = 1, · · ·N.

If the noise is Gaussian, the optimal linear filter for de-
tection is given by the matched filterhk = sN−1−k, and the
corresponding test statistic is

TMF(r) = sTr =
N

∑
k=1

skrk

where we have definedr ands as column vectors containing
the observations and the original waveform, respectively.

If the transmitted signal suffers a nonlinear distortion or
the noise distribution is white but not Gaussian, the matched
filter is not optimal anymore and its performance is expected
to degrade. In these situations, it has been recently shown
that a nonlinear criterion based on the Cauchy-Schwartz
quadratic mutual information (QMI) between the observa-
tions and the template signal, outperforms the matched filter
[4]. However, the QMI criterion operates on the template and
the observations as if they were i.i.d samples drawn from two
different distributions. Therefore, QMI does not take into ac-
count the time information conveyed by the waveform tem-



plate, which is crucial for this particular problem. This ex-
plains why in the linear case under Gaussian noise the QMI
criterion provides either similar or worse results than the lin-
ear matched filter [4].

In this paper we explore an alternative approach that
looks for optimal detectors in a feature (transformed) space.
To this end, the input data spaceR is mapped into a much
higher dimensional feature spaceF

Φ : R −→F , x−→ Φ(x),

where the dot product between feature vectors can
be computed using a positive definite kernel function
〈Φ(x),Φ(y)〉 = κ(x,y). This is the so-calledkernel trick,
which allows us to obtain nonlinear versions of linear al-
gorithms that can be expressed in terms of inner products,
without knowing the exact mappingΦ.

Fig. 1 represents the nonlinear mapping applied to the
template and the observations. Typically, to solve any prob-
lem in the feature space a cost function involving an empir-
ical risk term and a quadratic regularizer is considered. In
this situation, the Representer Theorem [11] shows that the
optimal solution can be written as an expansion in terms of
the input examples. We use this idea to construct a template
hyperplane

ws =
N

∑
j=1

β jΦ(sj),

as well as an observation hyperplane

wr =
N

∑
k=1

αkΦ(rk).
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Figure 1: Test statistic in the feature space.

Then, a new statistic for the decision can be formed in the
feature space as the inner product between both hyperplanes,
i.e.,

T(r) =
N

∑
k=1

N

∑
j=1

β jαk
〈
Φ(sj),Φ(rk)

〉
=

N

∑
k=1

N

∑
j=1

β jαkκ(sj − rk),

(1)
where in the last equality we have used thekernel trick.
Without loss of generality, here we will only consider a
translation-invariant Gaussian kernel with kernel sizeσ :

κσ (x−y) = exp− (x−y)2

2σ2 .

In matrix form, Eq. (1) can be written as

T(r) = β
TKα (2)

whereβ
T = (β1, . . . ,βN), αT = (α1, . . . ,αN) andK is the

kernel matrix with elementsK( j,k) = κσ (sj − rk).
Now the problem reduces to obtain the optimal coeffi-

cientsβ andα. In the following section we propose to apply
Fisher linear discriminant analysis in the feature space to this
end.

3. KERNEL FISHER DISCRIMINANT ANALYSIS

3.1 Introduction

The signal to noise ratio is the criterion maximized in the lin-
ear case; however, in the feature space this criterion does not
make sense, since obviouslyΦ(sk+nk) 6= Φ(sk)+Φ(nk) and
therefore it is difficult to define a meaningfulSNRmeasure.
A more reasonable criterion would be to apply Fisher dis-
criminant analysis (FDA) [8], which seeks a linear projection
from the original space into a low dimensional space by max-
imizing the between-class scatter (the squared difference be-
tween the means for the classes), while simultaneously mini-
mizing the within-class scatter (the sum of variances for each
class). Therefore, the function to be maximized for FDA is

JFDA = max
(µ0−µ1)2

σ2
0 +σ2

1

. (3)

When applied in the feature space, linear FDA becomes
kernel FDA (K-FDA), which was first proposed in [9] and
later generalized to the multiclass problem in [10]. The ap-
plication of K-FDA to our detection problem is somehow
different to that of previous approaches, since here we are
trying to optimize two projectors: one for the template,β ,
and one for the observations,α, whereas in the conventional
K-FDA only one linear projector is sought [9],[10]. In addi-
tion, the conventional K-FDA problem finds the optimal pro-
jection using a set of labeled data for each class, while here
we only have the template waveform and some information
about the noise distribution.

3.2 Fisher’s cost function and optimization procedure

Under hypothesisH0 (only noise is present) the mean value
for the test statistic is

µ0 =
N

∑
k, j=1

αkβ jE [κσ (sj −nk)] .

If the noise is normally distributed with zero mean and vari-
anceσ2

n , then the following result can be easily obtained

E [κσ (sj −nk)] =
σ

σ ′ κσ ′(sj), (4)

whereσ ′ =
√

σ2 +σ2
n . Therefore, the mean value underH0

can be written in matrix form as

µ0 = β
TK0α,

whereK0 is anN×N matrix whose( j,k) element is given
by (4).



Similarly, under hypothesisH1 we obtain

µ1 = β
TK1α,

where now the elements ofK1 are given by

K1( j,k) =
σ

σ ′ κσ ′(sj −sk).

Let us note that, whileK0 is a rank-one matrix,K1 will be in
general full-rank. The squared difference between the means,
which is the numerator of the FDA cost function (3), is given
by

(µ1−µ0)2 = α
T (

K1−K0
)T

β︸ ︷︷ ︸
µ1−µ0

β
T (

K1−K0
)

α︸ ︷︷ ︸
µ1−µ0

. (5)

By switching the order of the multiplicative terms, Eq. (5)
can be also written as

(µ1−µ0)2 = β
T (

K1−K0
)

αα
T (

K1−K0
)T

β .

In a parallel way, the variance under hypothesisHi , for
i = 0,1 can be obtained as

σ
2
Hi

= α
TE

[
(Ki −Ki)T

ββ
T(Ki −Ki)

]
α = α

TQβ

Hi
α,

(6)
where we have used the notationQβ

Hi
to stress the depen-

dence onβ . Alternatively, the variance could have been ob-
tained as

σ
2
Hi

= β
TE

[
(Ki −Ki)αα

T(KHi −Ki)T]
β = β

TQα
Hi

β .

Under the assumption of white Gaussian noise, the matrices
Qβ

i andQα
i can be computed in closed form (due to the lack

of space we do not include here the derivation).
After substituting the means and variances in (3), the cost

function for K-FDA becomes a nonlinear function ofα and
β , which must be iteratively solved to get the optimal solu-
tion. More specifically, if we considerβ fixed we can write

JK−FDA(α,β ) =
αTSβ α

αT
(
Qβ

1 +Qβ

0

)
α

(7)

where we have definedSβ =
(
K1−K0

)T
ββ

T (
K1−K0

)
.

It is easy to show thatSβ is positive definite and
(
Qβ

1 +Qβ

0

)
is semidefinite positive, therefore (7) is a generalized
Rayleigh quotient, whose maximum is given by the eigen-
vector corresponding to the maximum eigenvalue of the fol-
lowing generalized eigenvalue (GEV) problem(

Qβ

1 +Qβ

0 + µI
)

α = λSβ
α, (8)

whereµ is a small positive constant which has been intro-
duced to avoid numerical issues in the solution of the GEV
problem as well as to impose additional capacity control in
the space of solutions.

The value ofα obtained in this way, is used to estimate
Qα

0 andQα
1 and a new solution forβ is now obtained by

solving the following GEV problem

(Qα
1 +Qα

0 + µI)β = λSα
β (9)

whereSα =
(
K1−K0

)
ααT

(
K1−K0

)T
. The procedure is

repeated until convergence.

3.3 A simplified procedure

Let us consider that the transmitted waveform is a Gaussian
pulses= exp(−t2), wheret = −5 : 0.25 : 5. This signal is
received in AWGN and the signal to noise ratio was set to
SNR= 10dB. Fig. 2 shows the optimalβ andα obtained by
applying the proposed K-FDA detector to this example (the
regularization parameter wasµ = 1e−5 and the kernel size
wasσ2 = 5).

We can see that both curves look like the original Gaus-
sian pulse; in fact,α (i.e. the projector for the observations)
is indistinguishable (up to a scale factor) from the original
waveform. This observation, which has been corroborated in
a number of examples, allows us to simplify the optimiza-
tion procedure to getα andβ . In particular, we can fixα = s
and then the optimalβ can be obtained in a single step by
solving the GEV problem (9). With this simplification, only
matricesQα

i for i = 0,1 (see Appendix A) are needed in the
optimization procedure.
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Figure 2: Optimal values ofα andβ for the Gaussian pulse.

4. SIMULATION RESULTS

In this section we compare the performance of the proposed
kernel Fisher discriminant analysis (K-FDA) statistic with
that of the conventional linear matched filter (MF) and the
recently proposed quadratic mutual information (QMI) esti-
mator [4], for different known signal waveforms and under
different noise distributions (Gaussian and impulsive).

The QMI is defined as

IQMI =
1
2

log

∫ ∫
f 2
SR(s, r)dsdr

∫ ∫
f 2
S(s) f 2

R(r)drds

(
∫ ∫

fSR(s, r) fS(s) fR(r)dsdr)2 , (10)

and it measures nonlinear dependencies between the obser-
vationsrk and the signalsk. In fact, it measures the corre-
lation between the joint pdf ofR andS and the product of
their marginals [4].

We consider again the Gaussian waveform of Section 3.3.
All the results shown for the K-FDA detector have been ob-
tained withσ2 = 5 andµ = 1e−5 (regularization parameter)
using the simplified procedure described in Section 3.3.

In order to evaluate the performance of K-FDA under
impulsive noise, we have considered the following Gaussian
mixture model

fN(n) = (1− ε)N(0,σ2
1)+ εN(0,σ2)



whereε measures the percentage of noise spikes andσ2
2 >>

σ2
1 . In our simulations we have usedε = 0.15 andσ2

2 =
50σ2

1 .
Fig. 3 shows the receiver operating characteristic (ROC)

curves for MF, QMI and K-FDA, when the waveform is dis-
torted by AWG noise or impulsive noise; in both situations
theSNRwas set to 10 dB. Under Gaussian noise, obviously
the MF is the optimal test statistic for the problem. We can
see that the K-FDA detector, although obtained in a com-
pletely different way, provides the same performance. On
the other hand the QMI is not able to achieve the optimal
performance in the linear case. When the noise is impulsive
the proposed K-FDA detector clearly outperforms the linear
matched filter. This increased robustness against impulsive
noise is attributed to the fact that when an outlier is present,
the inner product in the feature space computed via the Gaus-
sian kernel tends to be zero (i.e.,κ(si − rk) ≈ 0 whenrk has
a large value).
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Figure 3: ROC curves for K-FDA, MF and QMI. Gaussian
pulse, AWGN, SNR=5 dB.

We can conclude that under Gaussian noise the K-FDA
obtains practically the same results than the optimal MF,
but shows a more robust behavior under unknown impulsive
noise distributions. On the other hand, the QMI also shows
some robustness against impulsive noise, but under Gaussian
noise does not achieve the optimal performance of the MF
filter.

5. CONCLUSIONS

In this paper we have proposed a new nonlinear test statis-
tic for detecting a known signal in noise. The test statistic
computes the inner product between two specific projections
in the feature space and the optimal projections for maximal
discrimination between both hypotheses are obtained using
Fisher discriminant analysis. Under the Gaussian noise as-
sumption we were able to derive closed-form expressions for
the means and variances for each hypothesis, and an iterative
procedure was proposed to maximize the Fisher’s criterion.
By means of some simulation results we have shown that the
nonlinear test statistic achieves the optimal performance of
the linear matched filter under Gaussian noise, while provid-
ing an increased robustness against impulsive additive inter-

ferences.
Although we have focused this study on the matched fil-

tering problem, we think that similar ideas could be applied
to solve prediction or identification problems in the feature
space: this seems to be an interesting line for further re-
search.

APPENDIX A

Under the Gaussian noise assumption it can be shown that
Qα

0 is a matrix with elements

Qα
0 (i, j) = ||α||22

(
γκσ1(si ,sj)κσ2

(
si +sj

2
,0

)
−G0(i, j)

)
andQα

1 has elements

Qα
1 (i, j)=

N

∑
k=1

α(k)2
(

γκσ1(si ,sj)κσ2

(
si +sj −2sk

2
,0

)
−G1(i, j)

)
.

where γ = σ√
2σ2

, σ2
1 = 2σ2 and σ2

2 = σ2
n + σ2/2 and .

Gm(i, j =)Km(i,1)Km( j,1), for m= 0,1.
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