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ABSTRACT 
Using EEG signals to estimate cognitive state has 

drawn increasing attention in recently years, especially in 
the context of brain-computer interface (BCI) design. How-
ever, this goal is extremely difficult because, in addition to 
the complex relationships between the cognitive state and 
EEG signals that yields the non-stationarity of the features 
extracted from EEG signals, there are artefacts introduced 
by eye blinks and head and body motion. In this paper, we 
present a classification system, which can estimate the sub-
ject’s cognitive state from the measured EEG signals. In the 
proposed system, a mutual information based method is 
employed to reduce the dimensionality of the features as 
well as to increase the robustness of the system. A commit-
tee of three classifiers was implemented and the majority 
voting results of the committee are taken to be the final de-
cisions. The results of a preliminary test with data from 
freely moving subjects performing various tasks as opposed 
to the strictly controlled experimental set-ups of BCI pro-
vide strong support for this approach. 

1. INTRODUCTION 

The Electroencephalogram (EEG) is a recording of the 
electrical potentials on the scalp, revealing the electrical 
activity of the brain tissue. Based on the evidence that EEG 
appears to reflect aspects of cognitive processes and may 
differentiate among mental activities and cognitive loads, 
much research effort has focused on exploiting the informa-
tion content of this signal for understanding the functioning 
of the brain as well as for clinical diagnostics. In particular, 
Brain Computer Interface (BCI) for communication and 
control is a typical application, in which a person interacts 
with the computer directly without utilizing physical man-
ners. In this paper, we focus on an alternative application: 
augmented cognition. Here, the goal is to enhance the task-
related performance of a human user through computer as-
sistance based on the assessments of the user’s cognitive 
level. 

EEG has many advantages in measuring brain activity 
including the convenience and low cost. However, it is very 
difficult to estimate cognitive or mental state from EEG sig-
nals for a number of reasons. Specifically, EEG signals (1) 
contain noise as a result of the movement of the electrode on 
the scalp; (2) are contaminated with eye blinks or other mus-
cular activities; (3) are not stationary. These difficulties are 
amplified in the augmented cognition application, because 
the subjects are freely moving around rather than bring in 

constrained environment as in a strictly controlled typical 
BCI experimental setup. 

In this paper, we will present a classification system, 
based on state-of-the-art signal processing and machine 
learning approaches, to solve the cognitive state estimation 
problem in augmented cognition applications. The proposed 
method is also applicable to BCI problems.  

2. METHOD 

The cognitive state estimation system we propose con-
tains four parts: preprocessing, feature extraction/selection, 
classification, and postprocessing. Preprocessing is used to 
filter out noise and remove the artefacts. Feature extraction 
and selection generates features from the clean EEG signals 
and selects useful features. For classification, a committee of 
3 classifiers are employed and the majority voting of the 
committee is adopted as the final decision. Postprocessing 
exploits the prior knowledge to improve the classification 
results. The schematic diagram of the proposed system is 
shown in Fig. 1. 
 
2.1 Preprocessing 

The experimental setting involves a user outfitted with 
wearable monitoring, communication, and mobile computing 
equipment walking outside. The monitoring equipment is a 
BioSemi ActiveTwo EEG system with 32 electrodes 
(http://www.biosemi.com/). Vertical and horizontal eye 
movements and blinks were recorded with electrodes below 
and lateral to the left eye. Although there are several other 
sensors, our effort focuses on extracting information and 
estimating cognitive state from EEG signals. 

EEG is sampled and recorded at 256Hz from 7 channels 
(CZ, P3, P4, PZ, O2, P04, F7) while the subject is moving 
around and performing various prescribed tasks (such as vis-
ual search and communicating on the radio). These sites are 
selected based on a saliency analysis of EEG collected from 
various subjects performing cognitive test battery tasks [1]. 
EEG signals are preprocessed to remove eye blinks using 
adaptive filters [2]. Information from the VEOGLB ocular 
reference channel was used as the noise reference source for 
the adaptive ocular filter. DC drifts were removed using 
high-pass filters (0.5Hz cut-off). A band-pass filter (between 
2Hz and 50Hz) was also employed, as this interval is gener-
ally associated with cognitive activity.   

 
2.2 Feature extraction and selection 

Feature extraction is a process focused on discovering a 
pattern that can differentiate the various classes, while feature 



selection is to find reduced dimensionality optimal feature 
vectors to keep the useful information and eliminate irrele-
vant information, in order to reduce the computational load 
and increase the robustness of the classification system. 

Feature Extraction: Usually, two approaches are used 
to extract the features from EEG signals. The first approach 
is based on the characteristic P300 signal that appears in the 
EEG approximately 300ms following the occurrence of an 
event, referred to as event related potentials (ERP). Since 
this approach relies on a device that interacts between a sub-
ject and the stimuli corresponding to the event, it is imprac-
tical in our augmented cognition setting. Hence, we employ 
the second approach: spatial and spectrum analysis. The 
power spectral density of signals from the seven different 
sites is used as features in this application. 

The PSD of the clean EEG signals, estimated using the 
Welch method [3] with 50%-overlapping 1-second windows, 
is integrated over 5 frequency bands: 4-8Hz (theta), 8-12Hz 
(alpha), 12-16Hz (low beta), 16-30Hz (high beta), and 30-
44Hz (gamma).  These bands, sampled every 0.1 seconds, 
are used as the basic features for the classification. The par-
ticular selection of the frequency bands is based on well-
established interpretations of EEG signals in existing cogni-
tive and clinical research literature [4]. 

Feature Selection: These PSD features constitute a high 
dimensional vector (5×7=35 in our application) that contains 
information pertinent to the classification of cognitive states, 
as well as irrelevant components and noise. Direct classifi-
cation using such input features is undesirable, since the 
unwanted components have an adverse effect on the overall 
classification performance and the generalization ability of 
the system. Consequently, an intelligent and practical tech-
nique for extracting the relevant information from these fea-
tures is necessary. 

Feature selection and dimensionality reduction has 
been shown to be an effective way to improve robustness 
and has been an active field of research in pattern recogni-

tion. This can be achieved by feature transformation method. 
The transformation generates either a new feature space, or a 
subset of the original, which can be treated as a special case 
of the former situation. This transformation can be linear or 
nonlinear. Linear transformations have been widely used 
due to their simplicity. While nonlinear transformations at-
tract increasingly more attention, usually, linear projections 
are preferred provided that they yield satisfactory results. 
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Fig. 1. Schematic diagram of the cognitive state estimation 

 There are many existing linear transformation methods 
for dimensionality reduction. Principle component analysis 
(PCA) is a widely used dimensionality reduction technique 
[5,6]. However, the projections it finds are not necessarily 
related to the class labels, therefore, it is not particularly use-
ful in pattern recognition. Linear discriminant analysis 
(LDA) attempts to eliminate this shortcoming of PCA by 
finding linear projections that maximize class separability 
under the Gaussian distribution assumption [7]. The LDA 
projections are optimized based on the means and the covari-
ance matrices of classes, which are not descriptive of an arbi-
trary probability density function (pdf). Independent compo-
nent analysis (ICA) has also been used as a tool to find linear 
transformations that maximize the statistical independence of 
random variables [8,9]. However, like PCA, the projection 
that ICA finds also has no necessary relationship with class 
labels, and it is not able to enhance class separability [10]. 
 Optimal feature selection coupled with a specific classi-
fier topology, namely the wrapper approach, results in a 
combinatorial computational requirement; thus, is unsuitable 
for adaptive learning of feature projections. On the contrary, 
the filter approach, which selects features by optimizing 
some criterion is independent of classifier, hence is more 
flexible. Since we will employ a committee of classifiers, the 
filter approach is more suitable for this application. 
 In the filter approach, it is important to optimize a crite-
rion that is relevant to Bayes risk, which is typically meas-
ured by the probability of error. A suitable criterion is mutual 
information (MI) between the projected features and the class 
labels (defined in (1)), which is motivated by lower and up-
per bounds in information theory that relate this quantity to 
probability of error [11,12]. Several MI based methods has 
been developed for feature selection [13-17]. However, since 
features are generally mutually dependent, feature selection 
in this manner is typically suboptimal in the sense of maxi-
mum joint mutual information principle. 
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If the components of the random vector y in (1) are inde-
pendent, the joint and joint-conditional entropy becomes the 
sum of marginal and marginal-conditional entropies. Thus, 
the joint mutual information of a feature vector with the class 
labels is equal to the sum of marginal mutual information of 
each individual feature with the class labels 
  (2) ∑ == n
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th component of y. In feature selection, we exploit this 

fact by combining independent component analysis (ICA) 
transformation with a sample-spacing based entropy estima-
tor [18]. 



 Many effective and efficient algorithms based on a vari-
ety of assumptions including maximization of non-
Gaussianity, minimization of mutual information, nonsta-
tionarity of the sources, etc., exist to solve the ICA problem 
[18-20]. All these could be compactly formulated in the form 
of a generalized eigen-decomposition problem that gives the 
ICA solution in an analytical form [21]. Therefore, this for-
mulation will be employed in this paper. 
 According to this formulation, one possible assumption 
set that leads to an ICA solution utilizes the higher order sta-
tistics (specifically fourth-order cumulants). Under this set of 
assumptions, the separation matrix W is the solution to the 
following generalized eigen-decomposition problem: 
  (3) WΛQWR xx =
where Rx is the covariance matrix and Qx is the cumulant 
matrix estimated using sample averages: Qx=E[xTxxxT]-
Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the estimates for these 
matrices, the ICA solution can be easily determined using 
efficient generalized eigen-decomposition algorithms (or 
using the eig command in Matlab). 
 There exist many entropy estimators in the literature for 
single-dimensional variables. Here, we use an estimator 
based on sample-spacing, which stems from order statistics. 
This estimator is selected because of its consistency, rapid 
asymptotic convergence, and simplicity. Consider a random 
variable Y. Given a set of iid samples of Y {y1,…,yN}, first 
these samples are sorted in increasing order such that 
y(1)≤…≤y(N). The m-spacing entropy estimator is given by: 
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The selection of the parameter m is determined by a bias-
variance trade-off and typically, Nm = .  
 
2.3 Classification 
 Since we do not know the distribution of the projected 
features of EEG signals, the comparison and combination of 
both parametric and nonparametric classifiers is desirable in 
classification process. The committee consists of three classi-
fiers denoted by GMM, KNN, and KDE. The selected opti-
mal feature vectors are used as inputs to the committee of 
classifiers. The GMM classifier implements a parametric 
Bayes classifier [22] assuming that each class distribution 
can be described by a GMM with 4 Gaussian components 
that is fit to the data from each class using the Expectation-
Maximization algorithm [23]. The KNN classifier decides 
based on the votes from 3×C+1 neighbours, where C is the 
number of classes and each vote is weighted inversely pro-
portional to the class prior pc of the contributing neighbours. 
It is well known that the KNN classifier asymptotically ap-
proaches the optimal Bayes classification error rate [22]. The 
KDE classifier implements a nonparametric Bayes classifier 
assuming that the distribution of each class is given by a ker-
nel density estimate [24] (using Gaussian kernels whose 
bandwidth parameters are selected according to Silverman’s 
rule-of-thumb [25]). 
 In our experiments, we find that KDE classifier has bet-
ter performance than the other two classifiers in most cases. 

Therefore, the committee decision strategy is that majority 
vote is preferred in general and in the case of no majority 
agreement, the KDE decision is adopted as final decision.  In 
real-time application, a committee decision is offered at a 
rate of 10Hz. 

 
2.4 Postprocessing 
 Postprocessing exploits prior context knowledge to im-
prove the classification performance. Assuming that the men-
tal state does not fluctuate within a given 2-second interval, it 
is possible to improve classification performance by a me-
dian filter that smoothens the decisions offered by the com-
mittee. The application of a median filter also introduces the 
inherent assumption that the integer class labels are assigned 
to cognitive tasks (the classes) in correlation with their actual 
corresponding cognitive loads. This postprocessing step in-
creases performance significantly. 

3. RESULTS 

 In order to illustrate the performance of the proposed 
cognitive state estimation system, we present results from an 
experiment where the subject is required to execute four pre-
determined tasks: slow walking, navigating and counting, 
communicating with radio, and studying mission map. Dur-
ing tasks, EEG signals are recorded when the subject is per-
forming one of the four tasks listed above. Each task is as-
signed a class label from number 1 to 4 respectively. After 
preprocessing and PSD estimation mentioned in the second 
section, approximately 6000 samples are obtained, each with 
35 dimensional inputs and a desired class label. A randomly 
selected one third of these samples are used as training set for 
feature selection and classification, and the remaining two 
thirds samples are used as testing set. The feature selection is 
achieved by the proposed ICA transformation and MI-sorting 
algorithm. The correct classification rates for different di-
mensionality of optimally selected features are evaluated 
using the classifier committee over 10 Monte Carlo runs. The 
results are shown in Fig. 2, from which we can see that an 
accuracy of 80% is achieved with 12 dimensions, while the 
remaining 23 dimensions do not significantly contribute to 
the classification accuracy. 
 The classification results based on 10, 12, and 35 dimen-
sional optimally selected features are compared in Table 1 
via the confusion matrix of the classification results; the ijth 
entry shows P(decide class j | true class is i). The classifica-
tion results illustrated here shows that this feature selection 
method is able to capture the low-dimensional relevant com-
ponents in the original feature space. In some experiments, 
the correct classification rate reaches the best performance 
when using 5 to 10 optimal features. After that, the classifica-
tion rate decreases when the number of features increases. 
This indicates that the high dimensionality feature also intro-
duces irrelevant and confusing information, which may im-
pair the classification accuracy; hence mutual information 
based feature projections improve classifier robustness. We 
also compare the proposed feature selected method with 
Mermaid-SIG algorithm [26]. The classification results show 
that the classification performances are similar. However, the 



ICA transformation in combination with MI sorting algo-
rithm is much faster and computationally efficient, which is 
critical in real-time applications. In another experiment 
where the stationary and mobile cases are considered sepa-
rately with 3 tasks in each case, the correct classification rate 
reaches more than 95% based on 3 dimensional optimal fea-
tures. 

4. DISCUSSION 

 In this paper, we present a classification system, which 
robustly estimates the cognitive state using power spectrum 
density of EEG signals. Experimental results suggest that 
our system can achieve good performance in classifying 4 
different actions of an ambulatory subject. The system can 
work online after training. 
 Although the preliminary results are satisfactory, the 
nonstationarity of EEG signals presents a future challenge in 
finding robust features that will allow cross-session and 
cross-subject generalization. Our future research will focus 
on finding stationary representations of the features corre-
sponding to the different cognitive states.  In addition, we 
plan to combine the EEG-based analysis with additional 
sources of information including signals representing the 
movements and pose of the user as wells as those sensing 
aspects of the environment such ambient light, auditory noise 
and temperature. 
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