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ABSTRACT 
 
In this paper, we propose Minimum Error Entropy with 
self adjusting step-size (MEE-SAS) as an alternative to 
the Minimum Error Entropy (MEE) algorithm for training 
adaptive systems. MEE-SAS has faster speed of 
convergence as compared to MEE technique for the same 
misadjustment. We attribute this characteristic to 
automatic learning rate inherent in MEE-SAS where the 
changing step size helps the algorithm to take large 
“jumps” when far away from the optimal solution and 
small “jumps” when near the solution. We test the 
performance of both the algorithms for two classic 
problems of system identification and prediction. 
However, we show that MEE performs better than MEE-
SAS in situations where tracking ability of the optimal 
solution is required like in the case of non-stationary 
signals. 

 

1. INTRODUCTION 
 
For many years, adaptive signal processing community 
had been using mean squared error (MSE) as the cost 
function to train the adaptive filters [1][3]. Apart from 
having favorable properties like elegant and tractable 
mathematical solutions, it is the simplicity of the Least 
Mean Square (LMS) algorithm which had made this cost 
function a workhouse and a benchmark standard in 
adaptive signal processing. Although this criterion had 
been successfully applied in many real and practical 
situations, it is clear that MSE only takes into account the 
second order statistics and is optimal in the case of 
Gaussian signals with linear filters [3]. 
 In an effort to take into account higher order 
statistics, Least Mean Fourth (LMF) and its family of cost 
functions had been devised [5]. The corresponding family 
of filters had spurred a fresh interest in the field of 
adaptive filters with applications ranging from echo 
cancellation [8] to adaptive channel equalization in 
communications [9]. In his classic paper [5], Widrow 
shows that there exists a set of rules based on the 

increasing or decreasing nature of the moments of noise 
signal, which will help select the optimal filter among this 
family of adaptive filters. 

It has been observed that LMF and its higher order 
counterparts are stable only in a very narrow range and a 
proper selection of learning rate µ is crucial. To 
overcome this difficulty, a linear combination of the cost 
functions of LMS and LMF filters using a single 
parameter 0 1λ≤ ≥  has been proposed [6][7]. Many 
variations of these filters have already been developed by 
adaptively estimating the optimal parameter λ or by 
recursive estimating the cost function [6][10]. 

Although the mixed norm family of filters helps 
extend the theory of adaptive filters using one or two 
higher order statistics, it is evident that constraining all the 
moments of the error signal at the same time will be an 
ideal solution. It is a well known fact that knowledge of 
all moments of a signal completely characterizes its pdf 
[15]. Thus a cost function based on better descriptors of 
error pdf is a productive research direction. Entropy, first 
introduced by Shannon [4], quantifies the average 
information contained in a pdf. Minimization of the cost 
function based on entropy constrains all the moments of 
the error pdf and is clearly an elegant way of extending 
MSE. 

Information Theoretic Learning has become quite 
popular in recent years with the introduction of smooth 
sample estimators of entropy that do not require an 
explicit estimation of the pdf as proposed by Principe and 
collaborators [2][14]. The goal of entropy supervised 
learning follows the MSE framework. Given a set of 
input-desired signal pairs, the entropy of the output error 
over the training dataset is minimized. The procedure can 
be shown equivalent to minimizing the Csiszar distance 
between the probability distributions of the desired and 
system outputs [13]. 

Extensive comparisons have already been done 
between MEE and MSE techniques by Erdogmus et al. 
[11][14] and this is not the goal of this paper. Instead we 
extend the MEE by proposing a new technique called 
minimum error entropy with self adjusting step-size 
(MEE-SAS) which provides a faster speed of convergence 
for the same misadjustment by automatically selecting the 



step-size during learning. We provide a thorough 
comparison of these two search techniques in the case of 
system identification and prediction problems. 

The paper is organized as follows. Section 2 
introduces both MEE and MEE-SAS Information 
Theoretic Criteria. The analysis of the relation between 
MEE and MEE-SAS is discussed in section 3. Section 4 
deals with simulation results and finally we conclude in 
section 5. 
 

2. INFORMATION THEORETIC CRITERIA 
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Since the information potential is smooth and 
differentiable, a simple search technique to find the 
maximum is to move in the direction of its gradient. This 
well known technique called steepest ascent has the form 
shown below 
 
  (4) 1( 1) ( ) ( )n n Vµ+ = + ∇w w
 
where assuming a Gaussian kernel the gradient is 
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As shown in eq.2, V e always; hence V  

provides the upper bound on the achievable V e . Seen 
from a different perspective, V  is the “target” value to 
be reached in the information potential curve. Thus 

( ) (0)V< (0)
( )

(0)

( )(0) ( )V V e−  is always a positive scalar quantity which 
does not change the direction of the weight vector but can 
be used to accelerate the search technique given in eq.4. 
This modified search technique is named MEE-SAS. 
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Fig.1. Adaptive System training using information
theoretic criterion 
ider the supervised training scheme as shown in 
. Since in practice, we are not given the error 
py, one needs to estimate this quantity 
arametrically from the training data samples. Renyi’s 
ratic entropy for a random variable e  is given in 
 of its pdf as 

2
2 ,( ) log ( )eH e f e= − ∫ w de  (1) 

he pdf of a random variable e  is estimated using 
n window estimation with kernel function ( )σκ ⋅  as 
n in eq.2.The information potential is defined as the 
ent of the log. The minimum value of the entropy 

imum information potential) will be achieved for a 
istributed random variable ( ). 
e, 
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inimizing the entropy is equivalent to maximizing 
nformation potential since the log is a monotonous 
ion. Thus, the cost function ( )J e  for Minimum Error 
py criterion [14] is given as shown in eq.4 

MEE : ( ) min ( )J e V=
w

e  (3) 
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We can further note that there exists a cost function 

which gives rise to this gradient descent technique given 
by 

 [ ]2
MEE-SAS : ( ) min (0) ( )J e V V e= −

w
 (7) 

 
Maximizing the information potential is equivalent to 

minimizing the proposed cost function. One intuitive way 
to understand the MEE-SAS algorithm is to consider it as 
a variant of the MEE with a variable step 
size 2( (0) ( ))V V e µη∗ = − . The term ))()0((( eVV −  
regulates the step size by giving acceleration when far 
away from the optimal solution and reducing the step size 
as the solution is approached.  

For online training methods, the information potential 
can be estimated using stochastic version (SIG) [13] as 
shown in eq.8, where the sum is over the most recent 

samples at time . Thus for a filter order of length M, 
the complexity of MEE-SAS is similar to MEE and is 
equal to O(ML) per weight update  
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The selection of kernel size σ is an important step in 
estimating the information potential and is critical to the 
success of these information theoretic criteria. In practice 
we anneal the kernel from a large value of to a small 
value of to avoid the problem of local minima. 

110−
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3. ANALYSIS OF MEE-SAS AROUND THE 

OPTIMAL SOLUTION FOR LINEAR FILTERS 
 
Suppose that the adaptive system is an FIR structure with 
a weight vector w . The error samples are , 

where  is the input vector, formed by feeding the signal 
to a tapped delay line for the special case of an FIR filter. 
In order to minimize the cost function, we update the 
weights along the gradient direction with a certain step 
size 

- T
k ke d= w xk
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To continue with our analysis, we consider the Taylor 
series expansion of the cost function truncated to the 
linear term of the gradient around the optimal weight 
vector . ow
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Notice that truncating the gradient at the linear term 
corresponds to approximating the cost function around the 
optimal point by a quadratic surface. The Hessian matrix 
of this cost function is R , where  is given as R
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where ( ) (ji T )j i j i je e e d d∆ = − = − − −w w x xi . Note that 
since  is the Hessian of the performance surface 
evaluated at a local minimum, its eigenvalues are positive, 
which results in the well known bound for the step size 
for convergence. 
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The expression for time constant is given by 
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For large kernel sizeσ the surface can be approximated as 
a quadratic surface and the second derivative of the cost 
function at an arbitrary point is given by 
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where R~  is the Hessian for MEE. Further, large σ helps 
approximate the kernel as 
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Therefore the expression for R~  simplifies to a weighted 
Scatter Matrix given by 
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Using eigendecomposition to simplify eq.14, we see 
that the eigenvalues of MEE and MEE-SAS are related as 

 ( ) kkk eVV βλλ +−−≈
~)()0(2 w  (17) 

 
where kβ  is the square of the derivative of V with respect 
to kth weight vector. It is clear that MEE-SAS adaptively 
and automatically scales the eigenvalues of MEE to 
accelerate the search for the optimal solution. 
 

 4. SIMULATIONS 
 
4.1. System Identification using FIR 
 
The purpose of this simulation is to show the faster 
convergence of MEE-SAS compared to MEE for the same 
misadjustment. We consider a simple plant identification 
model with transfer function given by (order=9) [5] 
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The input to both the plant and the adaptive filter is 

white Gaussian noise with unit power. We analyze this 
problem for both critical and under fitted models using the 
stochastic gradient (LMS type adaptation). A standard 
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Fig.2. Average weight error power for critically fitted model 
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Fig.3. Normalized Information Potential 
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Fig.4. Average weight error power for under fitted model 
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Fig.5. Normalized information potential for sin(x2) prediction 

using TDNN 
method of comparing the performance in system 
identification problems is plotting the weight error norm 
since this is directly related to misadjustment [5]. In each 
case the power of the weight noise (averaged over 125 
samples) was plotted versus the number of iterations 
performed. The adaptive weights were initialized 
randomly at each instance. Further, in order to make the 
result independent of the input and weight initializations, 
we performed Monte-Carlo simulations with 100 different 
inputs and 100 different weight initializations for each 
input. To compare among different experiments we also 
plot the Normalized Information Potential (NIP) defined 
as 

 
)0(
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V
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which has a maximum value of 1. 
 
4.1.1. Critically Fitted Model 
 
Consider the case where the model of the adaptive filter is 
equal to that of the plant (Model Order = 9). In this case, 
ideally we can exactly track the output of the plant. Thus 
the maximum value of the NIP can be achieved (implies 
error is zero for all inputs).  In Fig.2 the weight 
misadjustment values for the last 100 samples of error are 

43.4 10−×  and 41.44 10−×  for MEE and MEE-SAS 
respectively (For practical purposes, we consider 
misadjustment values as zero for values less than 310− ). 
Thus with the same misadjustment values, it can be 
observed that MEE-SAS converges in 250 iterations 
whereas MEE takes 500 iterations to converge. In Fig.3 
we show the normalized information potential curve. 
 
4.1.2. Under fitted Model 
 
We analyze here the case where our filter order (N=7) is 
less than the true filter order. In this case we can expect a 
non-zero final error and hence the maximum achievable 
NIP will be less than unity. Fig.4 shows the averaged 
weight error power. MEE-SAS just takes 250 iterations to 
converge with a misadjustment of 0.0143 as compared to 
MEE which takes nearly 600 iterations with 
misadjustment of 0.0120. These results for linear systems 
are encouraging. 
 
4.2. Non linear prediction using TDNN 
 
As a second case study, we selected a non linear 
prediction problem using a Time Delay Neural Network 
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Fig.6. Information potential for online prediction of Mackey 

Glass time series 
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Fig.7. Probability density of error for last 200 samples 
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Fig.8. Two of the six weight tracks for MEE and MEE-SAS 
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Fig.9. Prediction performance of the Mackey Glass time series 

(TDNN) trained with the backpropagation algorithm [16]. 
Two hundred samples of were selected for this 
purpose. Architecture of 20-10-1 TDNN with tanh non-
linearity and one linear output PE was chosen. The 
training was carried out in batch mode for 30 epochs. 
Once again Monte-Carlo simulations were performed 
using 20 different weight initializations and the average 
performance was selected for comparison. 

)sin( 2x

As seen from Fig.5, MEE-SAS has a fast transition 
towards the solution. It was observed in general that for a 
single simulation MEE quite often showed a piecewise 
transitional behavior. From adaptation point of view this 
has a very interesting interpretation. Recall that the 
inherent property of MEE-SAS is that it has a large 
effective step size when the present solution is far from 
the optimal one leading to large “jumps” in the bowl of 
the cost function. Since, in the initial phase of adaptation, 
large kernel size ensures a smoother learning curve 
surface, thus large transitions in these surfaces helps 
MEE-SAS to avoid most local solutions and reach directly 
in the vicinity of the global solution.  Hence, although 
both algorithms reported a similar mean square error 
of , there is much faster learning in the case of MEE-
SAS than in the case of MEE. 

410−

4.3. Chaotic Time Series prediction using a FIR filter 
 
Finally, we consider a FIR filter for single-step prediction 
of the Mackey-Glass (MG) time series using the SIG 
estimation of information potential. The MG time series is 
generated by an MG system with delay parameter 30τ = .  
The input vector consists of 6 (tap) consecutive samples 
of the MG time series. 

We used the non stationary MG time series to 
compare the weight tracking ability of MEE and MEE-
SAS algorithms. Due to online mode of simulation, SIG 
results in some misadjustment and variation about the 
optimal solution. In order to compare two algorithms, we 
find the step size for each algorithm to be such that it 
produces similar probability densities of error ( ) for 
both cases within a window length of as shown in 
Fig.7. 

ke
200L =

In Fig.6, MEE-SAS converges in about 400 iterations 
whereas MEE need 700 iterations to achieve the same 
level of performance. Note the large fluctuations in the 
information potential curve of MEE as compared to MEE-
SAS. To investigate the effect of these large fluctuations, 
we plot two weight tracks and the predicted outputs of 
both the algorithms in Fig.8 and 9. The fluctuations in the 
MEE information potential curve translate into an ability 



to track the changes in the FIR optimal solution. This is 
confirmed in Fig.9. MEE performs better especially near 
high peaks and variations in MG signal.  

The loss of “sensitivity” of MEE-SAS can be 
attributed to the extremely small value of ))()0((( eVV −  
near the optimal solution which suppresses the transfer of 
information from the information potential gradient to the 
weight vectors.  In non-stationary signals tracking these 
small changes in the location of the weight vector is 
crucial for good prediction. Therefore, MEE-SAS still 
suffers from a tradeoff between speed of convergence and 
tracking of the optimal solution. A compromise is to use 
MEE-SAS for faster convergence and then switch to MEE 
technique when the information potential is close to unity 
(which is achieved near the optimal solution). In this way 
we can double the speed of convergence as well as retain 
the ability to track the changes in weight vector. 
 

5. CONCLUSIONS 
 
In this paper, an information-theoretic supervised learning 
criterion for adaptive systems, namely, minimum error 
entropy with squared error (MEE-SAS) has been 
proposed. We demonstrated that MEE-SAS extends MEE 
by using an automatic adaptive step size to accelerate the 
search for the optimal solution. 

Three different case studies were presented. The first 
one was a linear system identification problem using FIR. 
The second one extended this investigation to non-linear 
prediction using TDNN. In both these case studies it is 
clear that MEE-SAS converges much faster and avoids 
most of the local solutions compared to MEE. 

Finally we tested the performance of these two 
algorithms on the adaptation of FIR filter for the short-
term prediction of MG chaotic time series where tracking 
of optimal solution is crucial. We conclude that although 
MEE-SAS converges much faster than MEE, the lack of 
sensitivity near the optimal solution hinders tracking 
ability. Future direction of research includes overcoming 
this drawback by combining MEE and MEE-SAS so as to 
converge fast using MEE-SAS and then retain the 
tracking ability by switching to MEE. A detailed 
theoretical analysis of these two techniques needs further 
investigation. 
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