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 Abstract – Mutual information is an important 
tool in many applications. Specifically, in 
classification systems, feature selection based on MI 
estimation between features and class labels helps to 
identify the most useful features directly related to 
the classification performance. MI estimation is 
extremely difficult and imprecise in high 
dimensional feature spaces with an arbitrary 
distribution. We propose a framework using ICA 
and sample-spacing based entropy estimators to 
estimate MI. In this framework, the higher 
dimensional MI estimation is reduced to independent 
multiple one-dimensional MI estimation problems. 
This approach is computationally efficient, however, 
its precision heavily relies on the results of ICA. In 
our previous work, we assumed the feature space has 
linear structure, hence linear ICA was adopted. 
Nevertheless, this is a weak assumption, which might 
not be true in many applications.  Although non-
linear ICA can solve any ICA problem in theory, its 
complexity and the requirement of data samples 
restrict its application. A better trade-off between 
linear and non-linear ICA could be local linear ICA, 
which uses piecewise linear ICA to approximate the 
non-linear relationships among the data. In this 
paper, we propose that by replacing linear ICA with 
local linear ICA, we can get precise MI estimation 
without greatly increasing the computational 
complexity. The experiment results also substantiate 
this claim. 
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I. INTRODUCTION 

 Mutual information is an important tool in many 
applications, such as communications, signal 
processing, and machine learning. Specifically, in 
pattern recognition, dimensionality reduction and 
feature selection based on mutual information 
maximization between features and class labels has 
attracted increasing attention, because this approach can 
find out the most relevant features, therefore (i) reduces 
the computational load in real-time system; (ii) can 

eliminate irrelevant or noisy features, hence increases 
the robustness of the system; (iii) is a filter approach, 
which is independent of the design of classifier, and is 
more flexible.  
 The MI based method for feature selection is 
motivated by lower and upper bounds in information 
theory [2,3]. The average probability of error has been 
shown to be related to MI between the feature vectors 
and the class labels. Specifically, Fano’s and Hellman & 
Raviv’s bounds demonstrate that probability of error is 
bounded from below and above by quantities that 
depend on the Shannon MI between these variables. 
Maximizing this MI reduces both bounds, therefore, 
forces the probability of error to decrease. 
 One of the difficulties of this MI-based feature 
selection method is that, estimating MI requires the 
knowledge of joint pdf of the data in feature space. 
However, since features are generally mutually 
dependent, feature selection in this manner is typically 
suboptimal in the sense of maximum joint mutual 
information principle. Several MI-based methods have 
been developed for feature selection in the past years [4-
9]. Unfortunately, all of these methods failed to solve 
the high dimensional situation. 
 In practice, the mutual information must be 
estimated nonparametrically from the training samples. 
Although this is a challenging problem for multiple 
continuous-valued random variables, the class labels are 
discrete-valued in the classification context. This 
reduces the problem to just estimating entropies of 
continuous random vectors. Furthermore, if the 
components of the random vector are independent, the 
joint entropy becomes the sum of marginal entropies. 
Thus, the joint mutual information of a feature vector 
with the class labels is equal to the sum of marginal 
mutual information of each individual feature with the 
class labels, provided that the features are independent. 
In our previous work, we exploited this fact and 
proposed a framework using ICA transformation and 
sample-spacing estimator to estimate the mutual 
information between features and class labels [1]. This 
framework is superior because it is open to diverse 
algorithms, i.e. each component, including ICA 
transformation and entropy estimator can be replaced by 
any qualified algorithm/alternative. 
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 We employed the cumulant-based generalized 
eigenvalue decomposition (GED) approach [10] to 
determine the linear ICA transformation and the 
sample-spacing estimator [11] as the marginal entropy 
estimator in EEG signal classification [12]. Although 
linear ICA yields good performance in some 
applications, it is a weak assumption in many real world 
problems. Since this framework heavily relies on the 
performance of ICA, the precision of MI will be greatly 
impaired in nonlinear situations. Recently, nonlinear 
ICA has attracted more attention due to its ability to 
capture the nonlinear relationships within the data [13]. 
However, the complexity of finding robust regularized 
nonlinear transformations makes it difficult to use in 
many situations. Furthermore, nonlinear ICA has the 
following shortcomings: (i) It requires more training 
data, especially in higher dimensional situations; (ii) our 
framework needs to be revised according to the form of 
the nonlinear ICA. In this case, local linear ICA (which 
will be used in this paper) presents a good trade-off 
[14]. 
 Local ICA uses piece-wise linear ICA 
transformations to approximate nonlinear ICA. In 
practice, a clustering algorithm is applied first to divide 
the data into segments. We assume the data within 
segments have the linear relationship, thus we can use 
the previously proposed framework to estimate MI 
within each segment. According to the principle of 
information addition, total MI equals to the summation 
of the MIs of each segment. In this way, we can extend 
our previous framework easily to local ICA-based 
nonlinear MI estimation. The system block diagram of 
local ICA-based MI estimation is shown in Fig. 1. In the 
following sections, we will introduce the theoretic 
feasibility of local ICA for MI estimation. To verify the 
proposed approach, we also present experimental results 
on synthetic and EEG data sets. 
 

II. THEORETICAL BACKGROUND 

 Consider a group of nonlinearly distributed, d-
dimensional feature vectors: x=[x1,x2,...,xd]T. We first 
apply a suitable clustering algorithm to segment the data 
into n partitions: x(1), x(2), …, x(n). We assume within 
each partition x(i), the data is d dimensional, and 

distributed in accordance with the linear ICA model. 
Within each partition, we apply the linear ICA 
transformation to get feature vectors: y(1), y(2),  …, y(n), 
where y(i)=[y1

(i),y2
(i),…,yd

(i)]T. Since the linear ICA 
transformation does not change the mutual information, 
we have: 

Figure 1. Local linear ICA for mutual information
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where i = 1…n, denote the n clusters, x(i) are the original 
dependent components, and y(i) are the independent 
components. 
 It is well known that the mutual information can be 
expressed in terms of conditional entropy as follows: 
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where c is the class label, pc are the prior class 
probabilities.  
 If the components of the random vector y(i) are 
independent, the joint and joint-conditional entropies 
become the sum of marginal and marginal-conditional 
entropies:1 

  (3) 
∑ ∑

∑

−

≈

c d

i
dSc

d

i
S

iii
S

yHP

yHyyyI
dd

)|(

)();,,,(

)(

)()()()(
21

c

cK

 It is easy to show that the total MI between x and c 
equals to the summation of the MI within each 
segmented data group: 
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Combining (1)-(4), we can get: 
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 In principle, the proposed local ICA for MI 
estimation contains three parts: clustering algorithm, 
linear ICA algorithm, and one-dimensional entropy 

                                                           
1   Here we assume that the same ICA transformation achieves 
independence in the overall conditional distributions simultaneously.  



estimator. For each component, one can use any 
established method. In this paper, we use K-means 
clustering, GED-based ICA transformations, and 
sample-spacing entropy estimators.  
 K-means clustering: The K-means method is 
defined as to minimize the over all distance of the data 
to the center of K clusters: 
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where mi is the center of each cluster. This algorithm 
first selects K arbitrary cluster centers, and then 
calculates the distance between all data points to these 
clusters center respectively. By grouping the nearest 
data to the each center in a particular group, we get a 
segmentation of the data set. Because we select the 
cluster center arbitrarily, this segmentation may not 
minimize eq (6). Replacing the each cluster center with 
the mean value of each group, we get a new set of 
cluster centers. The process above is repeated until J 
converges to its minimum value. 
 ICA Using Generalized Eigenvalue Decomposition: 
The square linear ICA problem is expressed in (7), 
where X is the n×N observation matrix, A is the n×n 
mixing matrix, and S is the n×N independent source 
matrix. 
  (7) ASX =

Figure 2. Synthetic dataset. Top: distribution of x1 and
x2, bottom: distribution of x3 and x4. 

Each column of X and S represents one sample of data. 
Many effective and efficient algorithms based on a 
variety of assumptions including maximization of non-
Gaussianity and minimization of mutual information 
exist to solve the ICA problem [11,15,16]. Those 
utilizing fourth order cumulants could be compactly 
formulated in the form of a generalized eigen-
decomposition problem that gives the ICA solution in 
an analytical form [10]. 
 According to this formulation, one possible 
assumption set that leads to an ICA solution utilizes the 
higher order statistics (specifically fourth-order 
cumulants). Under this set of assumptions, the 
separation matrix W is the solution to the following 
generalized eigendecomposition problem: 
  (8) WΛQWR xx =
where Rx is the covariance matrix and Qx is the 
cumulant matrix estimated using sample averages: 
Qx=E[xTxxxT]-Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the 
estimates for these matrices, the ICA solution can be 
easily determined using efficient generalized 
eigendecomposition algorithms (or using the eig 
command in Matlab). 
 Estimating MI Using Sample-Spacings: There exist 
many entropy estimators in the literature for single-
dimensional variables. Here, we use an estimator based 
on sample-spacings [11], which stems from order 
statistics. This estimator is selected because of its 

consistency, rapid asymptotic convergence, and 
simplicity. 
 Consider a one dimensional random variable Y. 
Given a set of iid samples of Y {y1,…,yN}, first these 
samples are sorted in increasing order such that 
y(1)≤…≤y(N). The m-spacing entropy estimator is given 
by: 
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 The selection of the parameter m is determined by a 
bias-variance trade-off and typically Nm = . In 
general, for asymptotic consistency the sequence m(N) 
should satisfy 
 0/)(lim)(lim =∞=
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III. EXPERIMENTS AND RESULTS 
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Figure 3 EEG channel ranking in terms of classification
rate for two subjects by linear ICA and local linear ICA.

 Synthetic Dataset: In order to illustrate the 
feasibility and the performance of the proposed local 
ICA for MI estimation approach, we apply it to a 
synthetic dataset. This dataset consists of four 
dimensional feature vectors: xi (i=1,…,4), where x1 and 
x2 are nonlinearly related (Fig 2 top), x3 and x4 are 
Gaussian distributed with different mean and variance 
(Fig. 2 bottom). There are two classes in this dataset 
(represented as blue and red in Fig. 2). These two 
classes are separable in the x1 and x2 plane, but 
overlapping in the x3 and x4 plane. It is clear that this 
dataset can be well classified by only using x1 and x2, 
while x3 and x4 provides redundant and insufficient 
information for classification. From the Fig. 2 we can 
see that x2 has less overlap compared with x1, while x3 
has less overlap than x4. So ideally, the feature ranking 
in descending order of importance in terms of 
classification rate should be x2, x1, x3, x4. In our 
experiments, we choose the sample size as 10000, and 
segment data into 50 partitions. The ‘+’ in Fig.2 
represents the cluster centers. In the top figure we can 
see these centers distribute evenly along the curve of 
each classes, segmenting the nonlinear data into 
piecewise linear groups. The choice of the number of 
centers K is very critical. By choosing large K, the 
linear relationship within each segment becomes 
stronger. However, a large K will cause diminishing 
sample size within some partitions, which will cause 
inaccurate ICA transformation estimates and entropy 
estimates. 
 By applying the proposed method on this synthesis 
dataset, we get the feature ranking result: x2, x1, x3, x4, 
which is consistent with our expectation.  
 EEG data classification: To compare the 
performance of local ICA for MI estimation with the 
previous linear ICA approximation for MI estimation, 
we apply both approaches on an EEG-based brain 
computer interface (BCI) dataset.  The EEG data is 
collected as part of an augmented cognition project, in 
which the estimated cognitive state is used to assess the 
mental load of the subject in order to modify the 
interaction of the subject with a computer system with 
the goal of increasing user performance. During data 
collection, two subjects are required to execute different 
levels of mental tasks, which are classified as high 
workload and low workload. EEG data is collected 
using a BioSemi Active Two system using a 31 channel 
(AF3, AF4, C3, C4, CP1, CP2, CP5, CP6, Cz, F3, F4, 
F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, O1, O2, Oz, 
P3, P4, P7, P8, PO3, PO4, Pz) EEG cap and eye 
electrodes. Vertical and horizontal eye movements and 
blinks were recorded with electrodes below and lateral 
to the left eye. EEG is sampled and recorded at 256Hz 
from 31 channels.  
 EEG signals are pre-processed to remove eye blinks 
using an adaptive linear filter based on the Widrow-

Hoff training rule (LMS) [17]. Information from the 
VEOGLB ocular reference channel was used as the 
noise reference source for the adaptive ocular filter. DC 
drifts were removed using high pass filters (0.5Hz cut-
off). A band pass filter (between 2Hz and 50Hz) was 
also employed, as this interval is generally associated 
with cognitive activity. The power spectral density 
(PSD) of the EEG signals, estimated using the Welch 
method [18] with 50%-overlapping 1-second windows, 
is integrated over 5 frequency bands: 4-8Hz (theta), 8-
12Hz (alpha), 12-16Hz (low beta), 16-30Hz (high beta), 
30-44Hz (gamma).  These bands, sampled every 0.25 
seconds, are used as the basic features for cognitive 
classification.  
 The novelty in this application is that the subjects 
are freely moving around in contrast to the typical 
brain-computer interface (BCI) experimental setups 
where the subjects are in a strictly controlled setting. 
The assessment of cognitive state in ambulatory 
subjects is particularly difficult, since the movements 
introduce strong artifacts irrelevant to the mental 
task/load. Furthermore, the features extracted from EEG 
data exhibit strong nonlinearity.  In this case, feature 
selection by local ICA becomes important due to its 
abilities to precisely keep the useful information and 
eliminate the irrelevant information for classification. 
 To test the performance of local ICA for MI 
estimation in feature selection, we apply the EEG data 
into the classification system, which contains four parts: 
preprocessing, feature extraction and selection, 
classification, and postprocessing. Preprocessing is used 
to filter out noise and remove the artifacts as mentioned 
above. Feature extraction and selection generates 
features from the clean EEG signal, and selects useful 
EEG channels (each channel contains 5 frequency 



bands) using the proposed method. Consider we have 
around 2500 data samples for each subject, and the 
dimension of feature is 155 (31 EEG channels, 5 
frequency band each), we use K=4, which means to 
segment data into 4 groups. This is a roughly 
approximation. However, we can not choose K to be a 
larger number because on average we only have around 
600 data samples for each group with 155 dimensions. 
For classification, the K-Nearest-Neighbor (KNN) 
classifier is utilized. The postprocessing uses the 
assumption that the variations in cognitive state for a 
given continuous task will be slowly varying in time. A 
median filter operating on a window of 2-second 
decisions recently generated by the classifier is used to 
eliminate a portion of erroneous decisions made by the 
classification system.  
 The EEG channel selection results evaluated by 
classification rate are shown in Fig. 3. The red lines 
represent the classification performance with different 
number of optimal EEG channels for subject 1, while 
the blue lines are for subject 2. As a comparison, we 
also illustrate the performance using linear ICA for EEG 
channel ranking on both subjects. The solid line with 
stars illustrates the classification results for local ICA, 
while, the dashed line with circles illustrates the 
classification results for linear ICA. From Fig. 3 we can 
see that the ability to find an optimum subset for local 
ICA is superior to linear ICA: for subject 1, we get 
better classification performance from 7 optimal EEG 
channels; for subject 2, we get better performance from 
1 optimal EEG. 
 To compare feature ranking/selection results for 
linear ICA and local ICA more clearly, we list the EEG 
channel ranking in descend order in terms of 
contribution to classification for both subjects in the 
Table. 
 

Table. EEG channel ranking (descending order) in terms 
of contribution to classification rate for subject 1 and 
subject 2 with linear ICA and local ICA methods. 

Subject Method EEG channel ranking 

Linear ICA 
FC2, AF3, CPZ, FP1, CP5, CP1, C4, CP6, P3, 
CP2, F4, F3, PO4, O2, P4, O1, PZ, P8, FCZ, 
FC1, FC6, AF4, FC5, FZ, P7, F8, CZ, FP2, 
F7, PO3, OZ 

Sub 1 

Local ICA 
FC2, AF3, CPZ, AF4, FC5, F7, CZ, O2, F3, 
F4, FC6, C4, F8, P3, FP2, CP6, P8, PZ, P7, 
FZ, FC1, OZ, PO3, FCZ, FP1, CP2, CP1, P4, 
CP5, PO4, O1 

Sub 2 Linear ICA 
FC1, CP1, CZ, O1, C4, F3, FCZ, FC2, FZ, 
CP2, AF3, FP1, CP6, F4, P3, CPZ, CP5, AF4, 
FC6, P7, PO4, OZ, PZ, PO3, P4, F8, FC5, O2, 
F7, FP2, P8 

 
Local ICA

CP1, O1, FP1, CZ, 'FC1, P8, PO4, FP2, FCZ, 
P7, F4, P3, P4, PO3, CP6, FC6, CPZ, FC5, 
AF4, FZ, F3, CP5, F7, F8, AF3, CP2, C4, PZ, 
FC2, O2, OZ 

IV. CONCLUSIONS 

 In this paper, we presented a local ICA approach 
for MI estimation in feature selection. This work is an 
extension to our previous proposal of using linear ICA 
transformations plus sample-spacing entropy estimators 
for MI estimation. The local ICA approach combines 
the clustering algorithm of choice (K-means in this 
paper), the cumulant-based analytical solution for linear 
ICA transformations, and a computationally efficient 
mutual information estimator, by taking into account the 
fact that minimization of Bayes classification error can 
be approximately achieved by maximizing the mutual 
information between the features and the class labels. 
Local ICA is used to approximate nonlinear ICA 
piecewise linearly for data whose distribution is 
nonlinearly generated. This yields increased 
performance and accuracy compared with linear ICA 
transformations. In theory, nonlinear ICA can perfectly 
transform dependent components into independent 
feature vectors; however, the complexity and 
requirement for large amount of data samples limit its 
applications. On the other hand, local ICA is relatively 
simple compared with nonlinear ICA and requires less 
data samples, which is preferred in most of the 
applications. We must mention that in order to estimate 
MI precisely, both nonlinear and local ICA need a large 
data set, while local ICA leave much free space for a 
trade-off between accuracy and complexity. 
 Experiments using synthetic and real (EEG) data 
demonstrate the utility, feasibility and the effectiveness 
of the proposed technique. In comparison with the 
previous linear ICA approach, it is observed (as 
expected) that local linear ICA yields better 
performance than linear ICA. 
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