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 Abstract ─ Feature selection and dimensionality 
reduction are important steps in pattern recognition. In 
this paper, we propose a scheme for feature selection 
using linear independent component analysis and mutual 
information maximization method. The method is 
theoretically motivated by the fact that the classification 
error rate is related to the mutual information between 
the feature vectors and the class labels. The feasibility of 
the principle is illustrated on a synthetic dataset and its 
performance is demonstrated using EEG signal 
classification. Experimental results show that this method 
works well for feature selection. 
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I. INTRODUCTION 
 
 Feature selection and dimensionality reduction are 
important steps in pattern recognition tasks and many other 
applications. In practice, the relevant information about the 
data structure can often be represented by a lower 
dimensional manifold embedded in the original Euclidian 
data space. Specifically, in pattern recognition, a high 
dimensional feature vector is available, but usually the 
classification task can be achieved equally well by a feature 
vector of reduced dimensionality. Furthermore, reducing the 
number of features will also help the classifier learn a more 
robust solution and achieve a better generalization 
performance. This is due to the fact that irrelevant feature 
components are eliminated by the optimal subspace 
projection.  
 Dimensionality reduction by subspace projection is 
typically achieved by feature transformation methods. This 
transformation generates either a new feature space, or a sub-
set of the original feature space, which can be treated as a 
special case of the former situation. The transformation can 
be linear or non-linear. Linear transformations have been 
widely used due to their simplicity. While nonlinear 
transformations attract increasingly more attention due to 
their ability to capture the nonlinear relationships within the 
data, the complexity of finding robust regularized nonlinear 
transformations makes them a second choice in most of 

applications. In this paper, we will focus on linear 
transformations leaving the nonlinear transformations for 
future study. 
   There are many existing linear transformation methods 
for dimensionality reduction. Principle component analysis 
(PCA) is a widely used dimensionality reduction technique 
[1,2]. However, since the projections it finds are not 
necessarily related to the class labels, it is not particularly 
useful in pattern recognition. Linear discriminant analysis 
(LDA) attempts to eliminate this shortcoming of PCA by 
finding linear projections that maximize class separability 
under the Gaussian distribution assumption [3]. The LDA 
projections are optimized based on the means and the 
covariance matrices of classes, which are not descriptive of 
an arbitrary probability density function (pdf). Independent 
component analysis (ICA) has also been used as a tool to find 
linear transformations that maximize the statistical 
independence of random variables [4,5]. However, like PCA, 
the projection that ICA finds also has no necessary 
relationship with class labels, and it is not able to enhance 
class separability [6].  
 Optimal feature selection coupled with a specific 
classifier topology, namely the wrapper approach, results in a 
combinatorial computational requirement; thus, is unsuitable 
for adaptive learning of feature projections. On the contrary, 
the filter approach, which selects features by optimizing some 
criterion is independent of the classifier, hence is more 
flexible. 
 In the filter approach, it is important to optimize a 
criterion that is relevant to Bayes risk, which is typically 
measured by the probability of error. A suitable criterion is 
mutual information (MI) between the projected features and 
the class labels, which is motivated by lower and upper 
bounds in information theory that relate this quantity to 
probability of error [7,8]. In principle, MI measures non-
linear dependencies between a set of random variables taking 
into account higher order statistical structures existing in the 
data, as opposed to linear and second-order statistical 
measures such as correlation and covariance.  
 Several MI based methods have been developed for 
feature selection [9-13]. Estimating MI requires the 
knowledge of joint pdf of the data in feature space. 
Evaluating the MI between two scalar random variables (one 
being the discrete class labels) using histograms is studied in 
literature [9,13]. However, this approach fails when dealing 



with high dimensional variables. Torkkola [6] proposed an 
approach using a quadratic divergence measure to find an 
optimal transformation that maximizes the MI between 
features and class labels. This approach, being dependent on 
Parzen density estimation, is inefficient for subspace 
projections to high dimensionalities due to the joint density 
estimation requirement. 
 A shortcoming of existing MI-based feature selection 
methods is that, since features are generally mutually 
dependent, feature selection in this manner is typically 
suboptimal in the sense of maximum joint mutual information 
principle. In practice, the mutual information must be 
estimated nonparametrically from the training samples [14]. 
Although this is a challenging problem for multiple 
continuous-valued random variables, the class labels are 
discrete-valued in the feature transformation setting. This 
reduces the problem to just estimating entropies of 
continuous random vectors. Furthermore, if the components 
of the random vector are independent, the joint entropy 
becomes the sum of marginal entropies. Thus, the joint 
mutual information of a feature vector with the class labels is 
equal to the sum of marginal mutual information of each 
individual feature with the class labels, provided that the 
features are independent. In this paper, we exploit this fact by 
combining independent component analysis (ICA) 
preprocessing with a sample-spacing based entropy estimator 
[15] for feature selection (see Fig. 1).  
 The contributions of this paper are: (i) theoretical 
motivation of feature selection using ICA preprocessing and 
marginal mutual information sorting, (ii) a computationally 
efficient training algorithm for this paper that employs a fast 
analytical solution for ICA and simple and consistent sample-
spacing estimators for mutual information, (iii) the 
application of this technique to the classification of EEG 
signals for cognitive load assessment. 
 
 

II. THEORETICAL BACKGROUND 
 

 The goal of feature subspace projections is to improve 
classifier robustness by reducing data dimensionality in order 
to facilitate better generalization, as well as reducing the 
learning and operating complexity of the classifiers. While 
doing so, classification performance must not be 
compromised by throwing away components that provide 
useful information regarding the class labels. Theoretically, 

optimal feature projections should minimize the Bayes risk 
function for the given problem; the average probability of 
error is a widely used and accepted risk function and merits 
special attention. For different risk functions, the following 
theoretical and practical results can be easily modified. 
 The average probability of error has been shown to be 
related to MI between the feature vectors and the class labels. 
Specifically, Fano’s and Hellman & Raviv’s bounds 
demonstrate that probability of error is bounded from below 
and above by quantities that depend on the Shannon MI 
between these variables [7,8]. Maximizing this MI reduces 
both bounds, therefore, forces the probability of error to 
decrease. A similar result was also obtained by Erdogmus & 
Principe using Renyi’s MI; a parametric family of lower and 
upper bounds for the probability of error was provided 
[16,17]. Hellman & Raviv [7] showed that the upper bound 
on Bayes error is given by (HS(C)-IS(Y,C))/2, where HS(C) is 
the Shannon entropy of the a priori probabilities of the classes 
and IS(Y,C) is the Shannon MI between the continuous-
valued feature vector and the discrete-valued class label. 
Consequently, maximizing the MI between the projected 
features and the class labels potentially improves 
classification performance, and has drawn much attention 
[6,9-12]. 
 Mutual information was first introduced by Shannon in 
the context of digital communications between discrete 
random variables and was generalized to continuous random 
variables. In feature extraction, we are interested in the MI 
between the continuous-valued feature vector y and the 
discrete-valued class labels c. Shannon MI between y and c is 
defined in terms of the entropies of the overall data and the 
individual classes as 
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where pc are the prior class probabilities. The entropy is given 
by 
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where p(y|c) are the class conditional distributions and the 
overall data distribution is 
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Assume that features y are mutually independent, we have: 
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where )|()();( cyHyHcyI iSiSiS −= , and iy  is the ith 
component of feature space.  
 There exist a number of entropy estimators for one-
dimensional variables. Here, we will use the sample-spacing 
estimator for its simplicity.  
 The independence assumption can be acquired by ICA 
transformation. After that, the MI between each feature and 
the class labels, IS(y1,c),…,IS(yn,c) can be estimated by the 
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Fig. 1. Feature selection using ICA preprocessing and mutual 
information sorting 



projected data samples. We rank IS(yi,c) according to the 
value, and choose the m features with largest MI that account 
for the majority of the total MI between the feature vector 
and the class label. 
 In principle, any ICA algorithm followed by any MI 
estimator could be employed during the feature selection 
procedure described above. In the next section, we discuss 
the specific ICA transformation and MI estimator that are 
employed in our experiments. 
 
 

III. ICA TRANSFORMATION AND MI ESTIMATION 
 
 ICA Using Generalized Eigenvalue Decomposition: The 
square linear ICA problem is expressed in (5), where X is the 
n×N observation matrix, A is the n×n mixing matrix, and S is 
the n×N independent source matrix. 
 ASX =  (5) 
Each column of X and S represents one sample of data. If we 
consider each column as a sample in time, (5) becomes: 
 )()( tt Asx =  (6) 
Many effective and efficient algorithms based on a variety of 
assumptions including maximization of nonGaussianity, 
minimization of mutual information, nonstationarity of the 
sources, etc. exist to solve this ICA problem [14,15,18]. All 
these could be compactly formulated in the form of a 
generalized eigendecomposition problem that gives the ICA 
solution in an analytical form [19]. Therefore, this 
formulation reviewed by Parra & Sajda in [19] will be 
employed in this paper. 
 According to this formulation, one possible assumption 
set that leads to an ICA solution utilizes the higher order 
statistics (specifically fourth-order cumulants). Under this set 
of assumptions, the separation matrix W is the solution to the 
following generalized eigendecomposition problem: 
 WΛQWR xx =  (7) 
where Rx is the covariance matrix and Qx is the cumulant 
matrix estimated using sample averages: Qx=E[xTxxxT]-
Rxtr(Rx)-E[xxT]E[xxT]-RxRx. Given the estimates for these 
matrices, the ICA solution can be easily determined using 
efficient generalized eigendecomposition algorithms (or 
using the eig command in Matlab). 
 Estimating MI Using Sample-Spacings: Recall that in the 
case of feature selection for classification, the mutual 
information estimation reduces to the sum of marginal and 
conditional entropies as shown in (1) and (4). Therefore, we 
only need to estimate marginal entropies. There exist many 
entropy estimators in the literature for single-dimensional 
variables. Here, we use an estimator based on sample-
spacings, which stems from order statistics. This estimator is 
selected because of its consistency, rapid asymptotic 
convergence, and simplicity. 
 Consider a one dimensional random variable Y. Given a 
set of iid samples of Y {y1,…,yN}, first these samples are 

sorted in increasing order such that y(1)≤…≤y(N). The m-
spacing entropy estimator is given by: 
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This estimator uses two assumptions: the true density p(y) is 
approximated by a piecewise uniform density determined by 
m-neighbor distances and outside of the sample range, the 
true density has the same mean log probability density as the 
rest of the distribution. 
 The selection of the parameter m is determined by a bias-
variance trade-off and typically Nm = . In general, for 
asymptotic consistency the sequence m(N) should satisfy 
 0/)(lim)(lim =∞=
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IV. EXPERIMENTS AND RESULTS 
 

 Synthetic Dataset: In order to illustrate the feasibility and 
the performance of the proposed feature selection method, we 
apply it to a simple synthetic dataset. This problem consists 
of classifying two one-dimensional Lapalacian classes where 
a second confusing irrelevant Gaussian feature is introduced. 
Specifically, The 2-dimensional feature vector x is a random 
linear combination (determined by a matrix A) of the 2 
independent features s1 and s2, where s1 obeys the distribution 
given in (10) determining the class labels completely and s2 is 
redundant zero-mean unit-variance Gaussian noise 
independent from the class label. 
 )()1()(~ 12111 sfpsfps −+  (10) 
The class distributions are 

 )/12exp(
2
1)( 11 σ
σ

±−= ssfc  (11) 

 A Monte Carlo experiment is performed with p=0.5, σ 
varying from 0.1 to 2, and the number of training samples 
selected as 102, 103, and 104. For each combination the 
following process is repeated 100 times: a random mixing 
matrix A is selected (each entry uniform in [0,1]), a new 
training set is generated with the specified number of 
samples, and a new testing set of 106 samples is generated. 
The ICA solution and MI-based feature selection are 
performed using the training data, and a simple threshold 
classifier (also determined from the training data) is 
employed on the test data. For reference, the true optimal 
Bayes classifier (simple threshold of zero on s1) is also 
applied to the test data in every case. 
 The results averaged over the 100 Monte Carlo runs are 
shown in Fig. 2. As expected, the performance approaches 
the theoretical optimal as the training set size increases. In 
order to evaluate the performance of selected ICA 
transformation and the feature selection method, we introduce 
a parameter: cosα, which is defined as: 
 αα /cos eαT=  (12) 



where αT=eTWA is the actual selection matrix, and eT is the 
ideal selection matrix with value [1,0]T or [0,1] T. Ideally, we 
expect the value of cosα to be as close as 1 when number of 
training samples increases. Fig. 3 shows the cosα value 
averaged over 100 Monte Carlo runs.  As we expected, the 
value of cosα keeps unchanged for different σ. However, 
unexpectedly, it does not increase as the size of the training 
set increases. 
 Cognitive State Classification Using EEG Signals: In this 
example, the proposed method for feature selection is applied 
to the classification of cognitive state using features extracted 
from EEG signals collected while the subject performs a 
mental task. The data is collected as part of an augmented 
cognition project, in which the estimated cognitive state is 
used to assess the mental load of the subject in order to 
modify the interaction of the subject with a computer system 
with the goal of increasing user performance. In this 
experimental setup, the EEG signals measured at 256Hz by 
seven electrodes located at salient sites (CZ, P3, P4, PZ O2, 
P04, F7) are used to generate power-spectral features (1-
second sliding window integrated over 5 frequency bands: 4–
8Hz, 8–12Hz, 12–16Hz, 16–30Hz, 30–44Hz). The novelty in 
this application is that the subjects are freely moving around 
in contrast to the typical brain-computer interface (BCI) 
experimental setups where the subjects are in a strictly 
controlled setting. The assessment of cognitive state in 
ambulatory subjects is particularly difficult, since the 
movements introduce strong artifacts irrelevant to the mental 
task/load. The mobility of the operator increases the 
complexity of the design, because the measurement of the 
physiological states is extremely difficult in situations where 
the body of the subject is in motion. Feature selection 
becomes important in this task due to its abilities to keep the 
useful information and eliminate the irrelevant information 
for classification, in order to increase the robustness of the 
classification performance of the system.  
 During data collection, the subject is outfitted with the 
suite of sensors and performs a predetermined set of tasks: 
slow walking, navigating and counting, communicating with 
radio, and studying mission map. The EEG data is collected 
for training and testing. The whole classification system 
contains four parts: preprocessing, feature extraction and 
selection, classification, and postprocessing. Preprocessing is 
used to filter out noise and remove the artifacts. Feature 
extraction and selection generates features from the clean 
EEG signal, and selects useful features using the proposed 
method. For classification, the K-Nearest-Neighbor (KNN) 
classifier is utilized. The postprocessing uses the assumption 
that the variations in cognitive state for a given continuous 
task will be slowly varying in time. A median filter operating 
on a window of 2-second decisions recently generated by the 
classifier is used to eliminate a portion of erroneous decisions 
made by the classification system.  

Using the first 1/3 of the collected data for training and 
the remaining 2/3 for testing, the correct classification rate of 
the system on the test data over four classes is shown in Fig. 

Fig. 2. Classification errors vs. σ for different sizes of training sets 
compared with the theoretically optimal classifier. 
 

Fig. 3. Cosα vs. σ for different sizes of training sets compared with 
the ideal value of 1. 
 

Fig. 4. Correct classification rate (vertical axis) vs. dimensionality of 
optimally selected features (horizontal axis). 



4 for different feature subspace projection dimensions. An 
accuracy of 80% is achieved with 12 dimensions, while the 
remaining 23 dimensions do not significantly contribute to 
the classification accuracy. These results demonstrate that the 
proposed method of feature dimensionality reduction is able 
to capture the low-dimensional relevant components of the 
feature vector. 
 
 

V. CONCLUSIONS 
 
 In this paper, we presented a feature selection method 
based on the maximum mutual information principle. The 
technique combines the analytical solution for linear ICA 
transformations and a computationally efficient mutual 
information estimator, by taking into account the fact that 
minimization of Bayes classification error can be 
approximately achieved by maximizing the mutual 
information between the features and the class labels. The 
linear ICA transformation is used to separate the mixed 
features into approximately independent features so that 
single-dimensional mutual information estimation can be 
conveniently employed. The ICA transformation is 
determined by solving a generalized eigendecomposition 
problem, which is also computationally efficient and 
effective. The current method relies on linear ICA, which 
does not necessarily yield independent features, which 
violates the assumption of additive decomposition of mutual 
information that we have employed. Future work will expand 
this technique using nonlinear ICA in order to improve 
performance. Another alternative research direction is to use 
linear independent subspace analysis combined with efficient 
joint entropy estimators. 
 Experiments using synthetic and real (EEG) data 
demonstrate the validity and the effectiveness of the proposed 
technique. The results on the EEG data set reveal the fact that 
this method is able to determine relevant low-dimensional 
structures in data in the broad context of brain computer 
interfaces. The method exhibits the following appealing 
properties: 

• Intuitively motivated by information theory. 
• Easy to implement with low computational requirements. 
• Robust and accurate in classifier design due to the 

selection of salient features. 
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