
Abstract  Augmented cognition is an emerging concept that 
aims to enhance user performance and cognitive capabilities on 
the basis of adaptive assistance. An integral part of such systems 
is the automatic assessment of the instantaneous cognitive state of 
the user. This paper describes an automatic cognitive state 
estimation methodology based on the use of EEG measurements 
with ambulatory users. The required robustness in this context is 
achieved through the use of a mutual information based 
dimensionality reduction approach in conjunction with a 
committee of classifiers, and median filter outlier rejection 
element. We present classification results associated with 
cognitive tasks performed in mobile and stationary modalities. 
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I. INTRODUCTION 
 Augmented cognition is an emerging research concept at 
the intersection of cognitive science, neuroscience, and 
engineering. The aim of the augmented cognition effort is to 
enhance the task-related performance of a human user through 
computer mediated assistance based on assessments of 
cognitive state. The goal of these systems is to mitigate the 
effect of performance-decreasing cognitive factors inherent in 
human-computer interaction. Examples of such factors are 
limitations in attention, memory, learning, decision-making, 
and concurrent task execution. The effects of these factors on 
the relevant task performance depends on the current cognitive 
state of the user, as well as the cognitive capacity of the user, 
both of which might fluctuate in time due to a number of 
external and internal factors including fatigue, boredom, and 
stress. Techniques for noninvasive measurement of the 
physiological indicators of cognitive load are currently at an 
advanced stage. The current technological state in 
computational and wireless communication makes possible 
practical implementations of cognitive load assessment 
algorithms.  
 The augmented cognition approach to human-machine 
interface design is user-centered; therefore, the system is 
designed to infer the instantaneous cognitive state and 
information processing capabilities of the user in the context 
of multiple and unpredictable situations. These assessments 
form the basis for adaptive assistance that attempts to 
compensate for reduced human capacity and processing. The 
user’s instantaneous mental capability can be inferred using a 
combination of environmental and physiological 
measurements. These measurements might include limb 
positions, head and eye movements, electrocardiographs 
(ECG), electroencephalogram (EEG), and pulmonary 
plethysmograph measurements. 

 The assessment of the operator’s state is particularly 
difficult in situations where the operators must be able to 
move freely and to perform a combination of cognitive and 
physical tasks. The mobility of the operator increases the 
complexity of the design, because the measurement of 
physiological and neurophysiological states is affected by 
artifacts induced by motion.  Our approach is based on state-
of-the-art adaptive systems approaches.  In particular, we will 
describe a system that is based on the following scenario:  An 
operator is outfitted with a suite of sensors as well as the 
equipment required for the performance of tasks. During a 
short initial period the operator is asked to perform a 
predetermined set of simple tasks and the data obtained during 
that period is used to train a cognitive state classifier. 
Subsequently, as the operator interacts with the task 
environment, the augmented cognition system attempts to 
assess cognitive state. The results of these assessments trigger 
assistance that serves compensate for potentially impaired 
cognitive abilities. Whenever possible the augmented 
cognition system uses the measured information to adapt the 
assessment system to maintain the highest possible accuracy. 
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 This paper will specifically focus on the assessment of 
cognitive state from EEG measurements. The adaptive system 
to be described here was designed to estimate the 
instantaneous cognitive load of the subject using features 
obtained from a power spectral density (PSD) analysis of the 
various EEG channels at certain frequency bands. Since these 
features distributed spatially and over frequency contain 
irrelevant information as well useful information, the 
dimensionality of the data is drastically reduced using an 
adaptive linear subspace projection that filter out the irrelevant 
content by maximizing the mutual information between the 
projected set of features and the classes of cognitive states. 
Finally, a composite classification scheme consisting of a 
Gaussian-Mixture-Model (GMM) based classifier, a K-
Nearest-Neighbor (KNN) classifier, and a nonparametric 
Kernel Density Estimate (KDE) based classifier is employed 
to obtain estimates of the cognitive state. These classifiers 
work on the assumption that the variations on cognitive load 
during a continuous task will exhibit slow variations in time. 
Additional robustness and outlier rejection capability is 
introduced by a temporal median filtering operation on the 
estimates of the composite classifier. 
 
II. METHODOLOGY 
 The experimental setting involves a user outfitted with 
wearable monitoring, communication, and mobile computing 
equipment walking outside. The monitoring equipment is a 
BioSemi ActiveTwo EEG system with 32 electrodes 
(http://www.biosemi.com/). Vertical and horizontal eye 



movements and blinks were recorded with electrodes below 
and lateral to the left eye. All channels referenced the right 
mastoid. Although there are several other sensors, the focus of 
this paper is information extraction from the EEG signals. 
EEG is recorded at 256Hz sampling frequency from 7 
channels (CZ, P3, P4, PZ, O2, P04, F7) while the subject is 
walking about and performing various prescribed tasks. These 
sites are selected based on a saliency analysis on EEG 
collected from various subjects performing cognitive test 
battery tasks [1]. EEG signals are preprocessed to remove eye 
blinks using adaptive filters [2]. Information from the 
VEOGLB ocular reference channel was used as the noise 
reference source for the adaptive ocular filter. DC drifts were 
removed using highpass filters (0.5Hz cut-off). A bandpass 
filter (between 2Hz and 50Hz) was also employed, as this 
interval is generally associated with cognitive activity.  The 
power spectral density (PSD) of the EEG signals, estimated 
using the Welch method [3] with 50%-overlapping 1-second 
windows, is integrated over 5 frequency bands: 4-8Hz (theta), 
8-12Hz (alpha), 12-16Hz (low beta), 16-30Hz (high beta), and 
30-44Hz (gamma).  These bands, sampled every 0.1 seconds, 
are used as the basic features for the classification.  The 
particular selection of the frequency bands is based on well-
established interpretations of EEG signals in prior cognitive 
and clinical [4]. 
 These PSD features constitute a high dimensional vector 
that contains information pertinent to the classification of 
cognitive states, as well as irrelevant components and noise. 
Direct classification using such input features is undesirable, 
since the unwanted components have an adverse effect on the 
overall classification performance and the generalization 
ability of the system. Consequently, an intelligent and 

practical technique for extracting the relevant information 
from these features is necessary. This can be achieved by 
projecting the high dimensional feature vector to a lower 
dimensional subspace optimally using a linear adaptive 
topology.1  The overall schematic diagram of the system is 
shown in Fig. 1. The selection of the optimality measure will 
be discussed next. 
 Dimensionality Reduction: Dimensionality reduction 
has been shown to be an effective way to improve robustness 
and has been an active field of research in pattern recognition 
due to the aforementioned practical benefits. The techniques 
existing in the literature can be broadly classified into wrapper 
and filter approaches. The wrapper approach determines the 
optimal subspace projection in order to minimize the 
classification error (or Bayes risk more generally) for a 
specific classifier topology, while attaining a target reduced 
input dimensionality. The filter approach, on the other hand, 
determines the optimal projection by optimizing a suitable 
criterion, therefore provides a more versatile solution that can 
be utilized with any classifier topology with good results on 
average.2 Since we will employ a committee of classifiers, the 
filter approach is more suitable for this application. 
 The filter approach (with linear subspace projections) can 
be discussed under two main categories: feature selection, 
feature projection. Feature selection refers to the practice of 
selecting a subset of existing features from the high 
dimensional vector. While this method is advantageous in 
problems where collecting certain measurements are 
expensive, if this is not the case it remains as a special case of 
feature extraction with binary-value constraints on the 
projection matrix weights. In our experiments, EEG data from 
various spatial channels are collected and processed into five 
frequency bands with sufficient computational power and time 
for real-time operation. Therefore, the feature projection 
scheme is preferred. 
 Linear feature projections have been studied by many 
researchers using a variety of suitable optimality criteria. 
Traditional techniques include principal components analysis 
(PCA) and linear (Fisher) discriminant analysis (LDA) [5,6]. 
Since feature variances have nothing to do with classification 
performance in general, PCA is an approach that should not be 
employed for dimensionality reduction purposes in the pattern 
recognition context. This shortcoming is overcome in LDA by 
assuming that the class distributions are Gaussian and 
determining linear projections that minimize the Fisher 
discriminant function, the ideal optimality criterion under the 
assumptions. Nevertheless, this method also is not well-suited 
for general purpose dimensionality reduction, since the 
Gaussianity assumption is quite restrictive. In the recent years, 
mutual information between the projected features and the 

                                                           
1  While nonlinear subspace projection topologies should be theoretically 
preferred as linear projections are special cases, their versatility may create a 
generalization difficulty for the projection filter itself. Linear projections are 
therefore typically preferred provided that they yield satisfactory results. 
2  Obviously the wrapper approach potentially yields the optimal subspace 
projection for a specific classifier. However, it also limits the design 
flexibility greatly, since a decision to change the classifier also means 
redesigning the subspace projection as well. 
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Figure 1. Schematic diagram of the cognitive state estimation architecture. 



class labels have been proposed and investigated by some 
researchers as an optimality criterion for this purpose [7-9]. 
The use of mutual information is motivated by information 
theoretic lower and upper bounds on the probability of 
classification error [10]. Besides this formal theoretical 
support, it is an intuitive extension of the Fisher discriminant 
criterion to non-Gaussian distributions. 
 The idea behind LDA is to find projections that 
maximally separate the classes, while minimizing their 
individual spreads. In the case of Gaussian distributions these 
can be measured using the class means and variances. In 
general, the concept of entropy can be employed. Consider the 
following family of criteria based on Renyi’s entropy 
definition as a generalization of Fisher’s approach: 
  (2.1) ∑−=
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where y=Wx is the vector projected features obtained from the 
high dimensional original feature vector x, pc are the a priori 
class probabilities, and Hα(y) and Hα(y|c) are Renyi’s order-α 
entropy of y and the class conditional distribution y|c [11]: 

 ∫−
= yyy dpH )(log

1
1)( αα α

 (2.2) 

 

 
 (a) (b) 

 
 (c) (d) 
Figure 2. Feature projections obtained by maximizing J2. (a) 2-dimensional 
projection of the training data (b) 2-dimensional projections of the testing data 
(c) 3-dimensional projection of the training data (d) 3-dimensional projections 
of the testing data. 
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Table 1. Confusion matrices for the classifiers in stationary and mobile cases 
using 35-dimensional and 3-dimensional feature input vectors. The ijth entry of 
the confusion matrix denotes Prob(decide class i|true class j).

Renyi’s entropy is a generalization of Shannon’s and in fact in 
the limit as α→1 it approaches Shannon’s entropy. Since 
entropy is a measure of how spread a distribution is, 
maximizing Jα(y) tries to separate the classes by maximizing 
Hα(y) and minimize the individual class spreads by 
minimizing Hα(y|c). We employ an algorithm that maximizes 
J2(y) to optimize W based on a Parzen window estimate of 
Renyi’s entropy and the stochastic information gradient [12]. 
 Classification: The reduced dimensionality feature 
vectors are used as inputs to a committee of classifiers: GMM, 
KNN, and KDE. The GMM classifier implements a 
parametric Bayes classifier [6] assuming that each class 
distribution can be described by a GMM with 4 components 
that is fit to the data from each class using the Expectation-
Maximization algorithm [13]. The KNN classifier decides 
based on the votes from 3×C+1 neighbors, where C is the 
number of classes and each vote is weighted inversely 
proportional to the class prior pc of the contributing neighbor. 
It is well known that the KNN classifier asymptotically 
approaches the optimal Bayes classification error rate [6]. The 
KDE classifier implements a nonparametric Bayes classifier 
assuming that the distribution of each class is given by a 
Parzen window estimate [14] (using Gaussian kernels whose 
bandwidth parameters are selected according to Silverman’s 
rule-of-thumb [15]). The committee decision is the majority 
vote. In the rare case of no majority agreement, the KDE 
decision is assumed. A committee decision is offered in real-
time at a rate of 10Hz. 
 Outlier Rejection: The committee decision is susceptible 
to undesirable fluctuations in time, since the EEG activity 
exhibits time variability during the execution of any given 
mental or cognitive task. To eliminate such fluctuations in the 
cognitive state assessment, a median filter is employed to 
smoothen the final decision over a sliding interval of 2 
seconds with the assumption that the cognitive load does not 

vary faster than the corresponding rate and that the integer 
class labels are assigned to cognitive tasks (the classes) in 
correlation with their actual corresponding cognitive loads.3 
 
III. RESULTS 
 In order to illustrate the performance of the proposed 
cognitive state assessment system, we describe the results 
associated with an experimental evaluation. The results shown 
here were also verified in conjuntion with a large number of 
independent data sets and cognitive tasks that are not 
mentioned here. The sample experiment we consider here 
consists of classifying between cognitive states associated 
with three tasks in two modalities: when the subject is 
stationary and when the subject is mobile. The tasks in the 
stationary case are labeled relaxed (waiting for orders), 
communicate (getting orders from base via radio 
communication), and count (starting from 100 and decreasing 
by 7). The tasks in the mobile case are labeled navigate 
(walking to a designated target), navigate and visual search 
(walking while looking for snipers), and navigate and 
communicate (receiving and giving mission status reports). 

For stationary and mobile cases, EEG is recorded while 
the subject is performing the three corresponding tasks listed 
                                                           
3 Note that a mode filter could be employed instead of the median filter to 
eliminate the last assumption of ordered cognitive loads. 



above. After the preprocessing and PSD feature extraction 
stages, approximately 3000 input-label pairs are obtained, one 
third of which is used for training the feature projections and 
classifiers, and the remaining two-thirds is used for testing. 
The optimal 2-dimensional and 3-dimensional projections 
obtained by the Mermaid-SIG algorithm [12] are shown in 
Fig. 2 for both training and testing sets (different grayscale 
levels indicating classes). 

The classification results based on the 3-dimensional 
projections and the classification results based on the original 
35-dimensional features are compared in Table 1 for both 
stationary and mobile cases using the confusion matrices of 
the classification results. The projection dimensions here are 
selected to be 2 and 3 for visualization purposes, experiments 
performed on other data sets demonstrate that this method is 
effective in determining a lower dimensional projection that 
achieves at least the same performance as the original high 
dimensional feature vector. In another experiment where 
classification between 4 tasks (involving mixed stationary and 
mobile states) using 8 EEG channels, it achieves the same 
performance using the optimally selected 10-dimensional 
projection and the original 40-dimensional feature vector. 

The cognitive state estimator described here is employed 
in a real-time closed-loop adaptive performance enhancement 
scheme that schedules the communication traffic to the subject 
during a mission. Experiments conducted demonstrate that the 
assistance offered by this interface improves task-related 
performance greatly. For instance, the scheduling of 
communication based on the cognitive load assessment 
resulted in 100% improvement in message comprehension and 
125% improvement in situation awareness. 
 
IV. DISCUSSION 

The ability to detect and to classify the cognitive state of 
the operator is a prerequisite to successful augmentation of his 
cognitive performance. With ultimate realizations of such a 
system, we expect classification to be based on a suite of 
sensors that include environmental and behavioral 
measurements. Even in that scenario, however, classification 
approaches based on EEG will likely play a critical role.  In 
this paper we demonstrated that, using a novel and robust set 
of techniques for pattern recognition, it was possible to obtain 
nearly perfect classification performance based only on EEG 
alone. We expect that the variability and unpredictability of 
the realistic operators’ environments will impair the 
classification performance to some extent, but we believe that 
this drop in performance will be compensated for by the 
availability of additional inputs, such as accelerometers, and 
environmental sensors. 

The performance obtained in this study was achieved by 
developing effective ways to reduce irrelevant variability 
using relatively robust information-theoretic techniques for 
dimension reduction. In particular, the deployment of Renyi’s 
entropy measure enabled to obtain more robust dimension-
reduction result than would have been possible with the more 
traditional entropy measure based on Shannon’s formulation. 

We note that EEG associated with ambulatory operators is 
likely to be contaminated with numerous artifacts including 
motion-generated induced signals and myopotentials.  These 
artifacts would obscure EEG components associated with 
cognitive activity. In the context of the present study, 
however, these “artifact” signals may have contained useful 
information for the cognitive state classification. It is possible 
that many of these, typically undesirable signals are likely to 
be directly related to task relevant behaviors of the operator. In 
our future work, we plan to investigate ways that this 
information can be incorporated more directly into the 
classification process. 
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