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ABSTRACT 
 
Supervised adaptive system training is traditionally performed 
with available pairs of input-output data and the system weights 
are fixed following this training procedure. Recently, in the 
context of machine learning, where the desired outputs are 
discrete-valued, the idea of exploiting unlabeled samples for 
improving classification performance has been proposed. In this 
paper, we introduce an information theoretic framework based on 
density divergence minimization to obtain extended training 
algorithms. Our goal is to provide a theoretical framework upon 
which we can build efficient algorithms to this end. 

 
 
 

1. INTRODUCTION 
 

 Traditionally system identification and nonlinear regression 
have been approached in a supervised learning framework where 
different optimality criteria are utilized based on the statistics of 
the error between the adaptive system output and the desired 
output values [1-3]. All labeled pairs of available data are used in 
determining the optimal weights (typically by splitting this data 
to training and testing sets) and no further optimization is carried 
out over the unlabeled data samples in the actual application 
phase.1 

This approach has been deemed quite natural by everyone; 
after all, how could you use an input sample for training further 
an adaptive system if you did not know what output it should 
produce?2 Only recently, in the machine learning literature the 
concept of making use of unlabeled data in supervised learning 
to enhance classifier performance has been addressed. This is due 
to the fact that in pattern recognition, labeled samples are much 
more expensive to collect compared to unlabeled feature vectors. 

The most prominent approach is to use the well-known EM 
algorithm in a maximum likelihood framework [4,5]. Another 
interesting approach utilizes the representer theorem in the 
context of regularization to exploit the unlabeled data for 
smoother function approximation [6]. 

                                                 
1 Throughout this paper, labeled data pairs are those that are 
available in the form (x,y) where x denotes the input sample and y 
is the corresponding desired output value. All unlabeled data 
consists only of x values for which the corresponding output 
values are not specified or unknown. 
2 We are concerned about supervised learning, where a function 
approximator is optimized. Unsupervised learning, which is 
based on training from only input samples is not being addressed 
here. 

The purpose of this paper is to create a theoretical framework 
that allows the training of adaptive systems in supervised 
learning settings, using both labeled and unlabeled data. Under 
this framework, one can continue to train a system even after 
supervised training is completed. To this end, information 
theoretic approaches will be considered at a theoretical level and 
for some possible criteria, connections to existing methods will 
be pointed out. For illustration purposes, a special case of the 
proposed framework will also be studied. 

 
 

2. PROBLEM DEFINITION 
  
 Consider the function approximation problem. For 
convenience assume that independent and identically distributed 
(iid) input-output data {(x1,d1),…,(xT,dT)} are available from an 
unknown nonlinear function as follows:3 
 nfd += )(x  (1) 
The observed output (desired response) d is called the label of the 
input x, borrowing the terminology from pattern recognition. In 
function approximation, the labels are continuous-valued and 
corrupted by noise.4 
 An adaptive system with input x, output y, and weights w is 
used to approximate f: 
 ),( wxgy =  (2) 
The adaptive system could be linear filter (y=wTx), a neural 
network, or any other topology whose coefficients need to be 
optimized for a specific task. In supervised learning, the 
optimization is carried out by minimizing or maximizing an 
optimality criterion. The usual choice of this criterion is MSE 
[1,2], however alternative selections such as minimum error 
entropy (MEE) [7] or the ε-insensitive loss function [8] are also 
possible and equally valid. The error is defined as the difference 

                                                 
3 In some cases, the input and noise samples could be correlated 
violating the independence assumption. For the sake of argument, 
we assume independence at this point. 
4 For convenience a single output system is considered here, but 
the ideas generalize to multidimensional systems. 



between the available desired output and the output generated by 
the adaptive system for a specific input: e=d-y. For future use we 
define the following variables: 
 ),()(~)(

~
wxxx gfefd −==  (3) 

Furthermore, we assume that the input vector is a random 
variable X with an unknown probability density function (pdf) 
pX(.), the measurement noise N has an unknown pdf pN(.). The 
variables X and N are independent from each other. 
 In the training phase, an approximation to f could be 
obtained by minimizing the error (using any viable criterion). In 
the application phase, where the trained network is utilized on 
novel input data {xT+1,…,xK}, the weights determined in the 
training phase are fixed. The following question is to be 
answered: How do we continue to update the weights of the 
adaptive network in the application phase? 
 
 

3. AN INFORMATION THEORETIC APPROACH 
 
 Suppose that we have a data set {(x1,d1),…,(xT,dT)}∪ 
{xT+1,…,xK}. The data is collected as described in the previous 
section and an adaptive topology g(.,w) is to be optimized.  
 
3.1. Joint Distribution Based Criteria 
 
 Consider the joint distribution of the input-desired data: 
  (4) )())(()()|(),( | xxxxx XXXX pfdppdpdp NDD −==

The substitution for the conditional density is based on (1). The 
distributions in (4) will be estimated from available data 
whenever appropriate. Specifically, we can use 
{(x1,d1),…,(xT,dT)} to estimate pDX(d,x) and {x1,…,xK} to 
estimate pX(x). In other words, the unlabeled data that is acquired 
in the application phase can be used to continually update our 
estimate for the input distribution. 
 A natural information theoretic approach is to minimize the 
Kullback-Leibler (KL) divergence [9] between the estimates of 
both sides of (4) based on the available data. We propose 
minimizing  with 
respect to w. With a change of variables, it can be shown that this 
corresponds to minimizing the following expression: 
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The first and second terms are the entropies of the noise and the 
input. Therefore, they are constant (under the iid assumption), 
hence are independent of w. Consequently, it suffices to solve the 
following to minimize the KL divergence between the two 
distributions: 
 [[ ])),((logmin | XXXXX

w
fNpEE DN +−  (6)                                                 

It is important to note that the final form of the optimization 
problem in (6) has been targeted from the beginning, in order to 
eventually facilitate a stochastic-gradient approach to the training 
of adaptive systems in application phase. By arriving at a 
criterion that is expressed as the expectation over X, we can 

design an extended-learning algorithm that utilizes the incoming 
samples {xT+1,…,xK} in an on-line fashion for sample-by-sample 
updates that still converge in-the-mean to the desired solution. 
 In a more general framework, one can minimize various 
definitions of the divergence/distance between the estimates of 
the distributions on two sides of the equality in (4). Possibilities 
include Csiszar divergence, Renyi’s α-divergence, Euclidean 
distance, and angular distance (also called Cauchy-Schwartz 
distance) [10].5 For example, Renyi’s α-divergence leads to the 
following optimization criterion: 
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Due to L’Hopital’s rule, in the limit as α→1, (7) approaches (5). 
 Note that if the noise and input distributions are known, then 
(6) corresponds to a maximum likelihood solution. The 
generalized version in (7) allows us to manipulate the free 
parameter α to select how to emphasize denser and sparser 
regions in the joint XN probability space in the optimization. We 
have seen that α=1 corresponds to maximum likelihood. Larger 
α will emphasize dense regions more while smaller α will 
emphasize sparse regions. This plays a critical role when the 
input distribution is not uniform over the domain of the function. 
 Unfortunately, in most realistic situations, the noise 
distribution is unknown, therefore it needs to be estimated or 
approximated. We propose to use the error distribution as an 
approximation to that of the noise. Due to the independence of X 
and N, we have 
 )(*),(),( ~ ξξξ NEE ppp ww =  (8) 
For a general divergence measure (such as (5) and (7), this 
approximation leads to the following problem: 
  (9) ))),,((||)()),((min xwxxw XX

w
geppepD DE +

Fact 1. The divergence measure in (9) becomes zero if and only 
if f(x)=g(x,w) for all x in the support of pX(.).6 
Proof. If f(x)=g(x,w) for all x in the support of pX(.), then pE(.) 
becomes identical to pN(.), since  reduces to a Dirac-δ 
distribution. Due to this and (4), the divergence in (9) becomes 
zero. Conversely, if the divergence in (9) is zero, then the two 
distributions in the argument are identical over the support of the 
distribution p

(.)~Ep

DX. Therefore, it is easy to see that for all possible 
(d,x) values pE(d-g(x,w))=pN(d-f(x)). Substituting the right hand 
side of (8) for the error distribution, we have 

  (10) 
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This means ))(()),((~ xwx fdgdpE −=− δ . Thus, f(x)=g(x,w) 

for all x in the support of pX(.). � 

 
5 Definitions of these measures are in the appendix. 
6 In general, it is unlikely that there exists a w* such that 
f(.)=g(.,w*). However, the point of this fact is to validate the use 
of a divergence criterion if it was possible to access the true 
underlying function, and not to address what happens due to the 
shortcomings of the approximation topology. 



 Fact 1 validates the minimization of a divergence measure 
as shown in (9) for function approximation. The minimization of 
such a divergence to zero is necessary and sufficient for exact 
function approximation. Unfortunately, in practice, achieving a 
zero divergence is not always possible. In general, the unknown 
function f(.) may not be a member of the parametric family of 
functions spanned by g(.,w). In that case, minimizing a 
divergence will yield the projection of f onto the manifold where 
the family of functions g(.,w) lie, wherein the projection itself is 
determined by the divergence measure utilized.  
 
3.2. Marginal Distribution Based Criteria 
 
 The approach presented above, which is based on the joint 
distribution of the input and desired output variables, will 
typically be prone to the difficulties associated with the curse of 
dimensionality. For problems with large input dimensionality, 
estimating the joint distribution pDX(d,x) from the available 
labeled training data will become exponentially harder. In order 
to avoid such difficulties, we can resort to measures that do not 
consider the input distribution explicitly. 
 Before continuing further, consider the distribution of the 
desired output and the adaptive system output error. Due to the 
independence assumptions, the following identities hold. 
 (*),(),()(*)()( ~~ ξξξξξξ NEENDD pppppp ww ==  (11) )
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If the adaptive system function matches the true function f 
perfectly, then the output distribution pY(.) becomes identical to 

. However, the latter distribution is not available in 
practice. Consequently, similar to the previous section, we can 
employ various divergence measures to match p

(.)~Dp

Y(.)*pN(.) to 
pD(.). Once again, assuming that the error distribution 
approximates the noise distribution, the following divergence 
must be minimized: 
 ))(||),(*),((min ξξξ DEY pppD ww

w
 (12) 

 Similar to the reasoning in Fact 1, we can show that (12) 
becomes zero if and only if g(x,w)=f(x) for all x in the support of 
pX(.). Hence, minimizing (12) is necessary and sufficient for 
exact function matching. The same argument about f being a 
member of the function family g can be reiterated here. 
 
 

4. ALGORITHMIC POSSIBILITIES 
 
 For illustration, we consider the minimization of KL 
divergence formulated in (6). First, an estimate of the joint 
distribution pDX(d,x) must be obtained using the labeled portion 
of the data set {(x1,d1),…,(xT,dT)}. This could be achieved by 
parametric or nonparametric approaches. 
 The parametric approach involves assuming a specific 
structure for the distribution in terms of a prespecified family of 
distributions, such as exponential or mixture models. An 
exponential distribution assumption leads to a simple overall 
criterion. For example, if we assume that the distributions of 
interest are of the form 
  (13) ( ) )),(exp()(),,(exp),( γλxxX erepdqdp ED ==

where q(d,x,λ) is a polynomial function of (d,x) with coefficients 
λ, and r(e,γ) is a polynomial over e, minimization of the KL 
divergence in accordance with (9) becomes 

  (14) 
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The criterion is a combination of error entropy and maximum 
likelihood terms, and with the exponential density assumptions, it 
simply consists of the moments of the error and joint moments of 
the input variables. The coefficients of the polynomials can be 
estimated using the maximum likelihood principle or alternative 
analytical solutions such as Jaynes’ maximum entropy principle 
[11,12]. Furthermore, in the application phase, the second term 
can be approximately optimized using a stochastic gradient 
approach where each new unlabeled input sample is utilized for a 
single-sample update. Additional complexity reduction could be 
achieved by also making the expectation over E stochastic. Just 
for illustration purposes, if these polynomials are quadratic 
(leading to the unrealistic Gaussian distribution assumption) 

and sample means over available data are used to approximate 
the expectations, the extended-learning criterion in (14) becomes 
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Notice that the error samples are evaluated using the labeled data 
using the most recent weight values and the expectation over X is 
evaluated using all available input data (labeled and unlabeled). 
In practice, the second term could be approximated stochastically 
using only the most recent (unlabeled) input sample xk to 
approximate the sample average over K samples {x1,…,xK}. 
 The nonparametric approach can be implemented using a 
Parzen window estimate for the distributions (also called as 
kernel density estimates) [13,14]. Using appropriate kernel 
functions K(.), the densities are approximated by 
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where dt, xt, and et are evaluated over the labeled data pairs 
(training set). In this case, the KL divergence criterion, in 
accordance with resubstitution estimates of information theoretic 
measures [10,15], is given in (18). As in the parametric case, 
computational complexity could be reduced by resorting to 
stochastic gradients. The stochastic gradient for information 
theoretic measures using the kernel resubstitution estimates has 
been studied earlier [16]. 
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5. DISCUSSION 
 
 In this paper, we have discussed the feasibility of training 
adaptive systems using unlabeled input data in the application 
phase. Traditional adaptive systems theory optimizes the weights 
of the neural network by minimizing an error function evaluated 
over a labeled training set, where corresponding output values for 
specific inputs are available. The trained network is then applied 
to novel data (which we call the application phase) and no 
training of filter coefficients is performed at this stage. 
Specifically, we have investigated some information theoretic 
possibilities as the criterion for training in the application phase. 
This adaptation process during actual application is called 
extended supervised learning, and is essentially unsupervised. 
However, the criteria for extended supervised learning have been 
carefully designed to extract the most possible information from 
the labeled data (training set), as well as the unlabeled data. 
 The discussion here has been mostly theoretical, while some 
hints on how to implement these ideas in a practical learning 
system have been provided. Both parametric and nonparametric 
statistical approaches have been considered for a feasible 
implementation and at this point they both seem to be equally 
viable. However, the performance of these possible 
implementations as well as different divergence definitions are 
not studied here due to lack of space. These details will be visited 
in a future paper. 
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NSF grant ECS-0300340. 
 
 

APPENDIX 
 
 A wide range of possibilities exists for density divergences 
that could be used in this framework. We list a few of them. 
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Renyi’s divergence becomes KL divergence in the limit as α→1 
[17].  In Csiszar divergence, h is a convex function with h(1)=0 
[18]. If h(.)=-log(.), then we obtain the KL divergence. Euclidean 
and Cauchy measures are distances drawn from the linear algebra 
of function spaces [19]. 
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