
 

 

Learning Mappings in Brain Machine Interfaces with Echo State Networks 
 

Yadunandana N. Rao, Sung-Phil Kim, Justin C. Sanchez, Deniz Erdogmus, Jose C. Principe,  
Jose M. Carmena2,3, Mikhail A. Lebedev2,3, Miguel A. Nicolelis2,3,4  

 
Computational NeuroEngineering Lab, University of Florida, Gainesville, FL 32611 

Dept. of Neurobiology2, Center for Neuroengineering3, Department of Biomedical Engineering4
 

Duke University, Durham, NC-27710 
 

ABSTRACT 
 
Brain Machine Interfaces (BMI) utilize linear or non-linear 
models to map the neural activity to the associated behavior 
which is typically the 2-D or 3-D hand position of a primate. 
Linear models are plagued by the massive disparity of the input 
and output dimensions thereby leading to poor generalization. A 
solution would be to use non-linear models like the Recurrent 
Multi-Layer Perceptron (RMLP) that provide parsimonious 
mapping functions with better generalization. However, this 
results in a drastic increase in the training complexity, which can 
be critical for practical use of a BMI. This paper bridges the gap 
between superior performance per trained weight and model 
learning complexity. Towards this end, we propose to use Echo 
State Networks (ESN) to transform the neuronal firing activity 
into a higher dimensional space and then derive an optimal 
sparse linear mapping in the transformed space to match the 
hand position. The sparse mapping is obtained using a weight 
constrained cost function whose optimal solution is determined 
using a stochastic gradient algorithm.  

 
1. INTRODUCTION 

 
In their widely acclaimed article, Wessberg et al showed that, 

it is possible to predict the hand position of a primate using 
cortical neuronal firing activity [1]. Since then, many BMI 
research groups have adopted diverse linear and nonlinear 
modeling frameworks [1-8] with the ultimate goal of translating 
brain activity into prediction of animal behavior. The inputs to 
these models are usually multidimensional neural recordings 
collected from selected regions of a monkey�s brain. Although 
the linear models have simple training strategies, the limitation 
of linear mappings may hinder performance. Furthermore, these 
simple models have huge number of parameters and if the cost 
function is unable to properly select inputs, generalization 
suffers. Typical non-linear models that have been used in BMIs 
are non-linear Kalman filters [3], Time-Delay Neural Networks 
(TDNN), Recurrent Multi-Layer Perceptrons (RMLP) [6], 
particle filters [3] and nonlinear mixture models [7]. 
Remarkably, these models show only a slight improvement in 
performance for the experimental paradigms tested, but they can 
be designed with parsimonious architectures (fewer weights) [9]. 
However, the improvement in performance is gained at the 
expense of a significant leap in the computational costs of 
training these models. The problem is accentuated by the fact 
that these models may have to be re-trained occasionally to track 

the changing statistics and environment. This can severely 
restrict practical application of BMIs. In this paper, we propose a 
different architecture that has performance similar to that of 
RMLP, but the training has linear complexity as opposed to the 
RMLP training algorithm. Further, with respect to the linear 
model it has fewer weights. This new architecture provides a 
viable setup to simultaneously extract different output variables 
(e.g. hand position, velocity, griping force) from the same system 
state, creating a more flexible BMI system. At the core of the 
architecture is an Echo State Network (ESN) [10], which will be 
described briefly in the next section. The outputs of the ESN are 
then linearly combined by a sparse matrix. This will be 
discussed in section 3 of the paper followed by the experimental 
section in section 4, where we will design a BMI using this 
architecture.   

 
2. ECHO STATE NETWORKS: OVERVIEW 

 
Echo State Networks (ESN) first proposed by Jaeger [10] are 

recurrent networks with simplified learning mechanisms. ESNs 
exhibit some similarities to the �Liquid State Machines (LSM)� 
proposed by Maas et al [11], which possess universal 
approximation capabilities in myopic functional spaces. In this 
section, we will briefly summarize the basic principles of an 
ESN. ESN uses a �large reservoir� recurrent neural network 
(RNN) that can produce diversified representations of an input 
signal, which can then be instantaneously combined in an 
optimal manner to approximate a desired response. Fig. 1 shows 
the block diagram of an ESN. A set of input nodes denoted by 
the vector un∈ℜ Mx1 is connected to a �reservoir� of N discrete-
time recurrent networks by a connection matrix Win∈ℜ MxN. At 
any time instant n, the readout (state output) from the RNN 
reservoir is a column vector denoted by xn∈ℜ Nx1. In fig.1, we 
show two outputs and the associated feedback connection 
matrix, Wb∈ℜ Nx2 = [wb1,wb2]. The desired outputs form a column 
vector dn = [dxn;dyn]. The reservoir states are transformed by a 
static linear mapper that can receive contributions from the 
input. Each processing element (PE) in the reservoir can be 
implemented as a leaky integrator and the state output or the 
readout is given by the difference equation in (1). 
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where, 0<µ<1, C is the time constant and a is the decay rate [10]. 
The point-wise non-linear function f(.) is the standard sigmoid, 
f(.) = tanh(.). From a signal processing point of view, the 
reservoir creates a set of bases functions to represent the input, 



 

 

while the static mapper finds the optimal projection in this space. 
There are obvious similarities of this architecture to kernel 
machines, except that the kernels here are time functions (Hilbert 
spaces). We will now give the conditions under which an ESN 
can be �useful,� which Jaeger aptly calls as the �Echo State 
Property.� Loosely stated, the Echo State Property says that the 
current state is uniquely defined by the past values of the inputs 
and also the desired outputs if there is feedback. A weaker 
condition for the existence of echo states is to have the spectral 
radius of the matrix µCW +(1-µCa)I less than unity [10]. 
Further, the matrix W is sparse ensuring that the span of the 
representation space is sufficiently rich to construct the mapping 
to the desired response. 

In most engineering applications of ESN, e.g. system 
identification and prediction, the optimal linear mapper (see 
fig.1) is obtained using standard recursive algorithms that 
minimize MSE. However, when the number of RNNs (N) in the 
reservoir is very high, the dimensionality of the input to the 
linear mapper increases. Additionally, if the desired signals are 
in a lower dimensional space as in our case with the 2-D hand 
trajectory, increasing N will result in over-fitting. This calls for 
explicit regularization in the estimation of the optimal linear 
mapper. Conventionally, adaptive weight decay using cross-
validation is used for zeroing the weights that make little or no 
contribution to the cost. However, having a separate cross-
validation set may not be feasible for real world applications that 
require repeated training. In the next section, we will present an 
on-line scheme that introduces additional constraints on the MSE 
criterion to result in an optimal and sparse linear mapper.  
 

3. SPARSE-LMS ALGORITHM 
 

Let the linear mapper (assume single output for now) be 
denoted by the weight vector w = {wi}i=1�L. Consider the cost 
function in equation (2). 
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The first term is the regular Mean-Squared Error (MSE) and the 
second term is the constraint. The error ek is the difference 
between the desired signal dk and output yk=wTxk. The constraint 
fixes the sum of the pth powers of the absolute values of the 
individual elements wi of the weight vector w to a constant 

denoted by α. Note that, with p=1, we will be constraining the L1 
norm of the weight vector .w  The penalty factor is denoted by λ. 
Instead of fixing the penalty term, we can include λ as an 
adaptive parameter in the cost function. In order to estimate λ, 
we modify the cost function in (2) as, 
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where, β>0 that keeps the penalty factor λ bounded. The above 
cost function is sometimes referred to as the augmented 
Lagrangian [12]. The stochastic gradients of the cost are, 
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We will simultaneously minimize and maximize (3) with respect 
to w and λ respectively using the stochastic updates given by, 
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where, ηw and ηλ are small positive step-sizes, wki denotes the ith
 

element in the vector wk and  xki denotes the ith
 element in the 

vector xk. Allowing, λk+1 = λk as ∞→k , it is easy to see that the 
sequence {λk} converges to a value λ* given by, 
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where, w* is the asymptotic weight vector obtained from (5).  
Convergence of λ: For stable asymptotic convergence of the 
penalty sequence to zero, a necessary condition is 0<2βηλ<<1. 
Proof: Equation (6) can be rewritten as, )21(1 βηλλ λ−=+ kk  







 −∑+

=
k

L

i

p
kiw αβηλ

1
|| . If, 0<2βηλ<<1 the equation becomes 

kk λλ =+1 kcβηλ+ , where ck is the expression for the constraint. 
By letting λk+1 = λk, as k→∞, it is obvious that ck→0 and 
consequently, the Lagrangian λ* converges to zero. Proofs of 
convergence of w are fairly involved and are beyond the scope of 
this paper. It will suffice to say that the step-size parameter ηw 
plays a crucial role in the tradeoff between the speed of 
convergence and misadjustement in the final estimate. A robust 
update for w can be obtained by including a normalization term 
(similar to the NLMS algorithm) as shown in (8). Note that the 
normalization is just done on the gradient of the MSE cost. 
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The constant σ is a small positive number used to avoid possible 
divisions by zero.  
Selection of β, α and p: β is a positive stabilization constant that 
affects the convergence of the Lagrangian λ. It also acts as a 
balancing factor, weighing the constraint term against the MSE. 
A very high β will prioritize the constraint part of the cost 
function and the resulting residual MSE will be fairly high. On 
the other hand, a smaller β will tend to emphasize the MSE part 
and the constraint will not be strictly satisfied in the final 
estimate of w. In the experiments, we usually chose β in the 
interval (1-5). Constants p and α control the sparseness measure. 
Typically, both p and α are chosen to be unity. If α is made zero, 
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           Figure 1. Block diagram of an Echo State Network 
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there is a possibility of the weights converging to 0. To prevent 
this, β should be scaled down appropriately. Also, the selection 
of α should be based on the input dimensionality. In our 
experiments, we chose α in the range 0.5-1, for data dimensions 
less than 200 and up to 1.5 if the dimensionality exceeds 200. 
 

4. BRAIN MACHINE INTERFACE DESIGN 
 

We will now utilize the ESN coupled with the sparse LMS 
algorithm to design a BMI. The neural recordings were collected 
in the Nicolelis primate laboratory at Duke University. 
Microwire electrode arrays [13] were chronically implanted in 
the dorsal premotor cortex, supplementary motor area, primary 
motor cortex and primary somatosensory cortex of an adult 
female monkey while performing a hand-reaching task. The task 
involved the presentation of a randomly placed target on a 
computer monitor in front of the monkey. The monkey used a 
hand-held joystick to move the computer cursor so that it 
intersects the target. While the monkey performed the motor 
task, the hand position was recorded in real time along with the 
corresponding neural activity from multiple channels [8]. In the 
modeling analysis presented here, 185 neurons were monitored; 
the neuronal spike events were then binned (added) in non-
overlapping windows of 100ms and the behavioral datasets were 
downsampled and lowpass filtered to 10Hz. This data set was 
segmented into two exclusive parts: 5,400 samples for model 
training and 3,000 samples for model testing.  
Design of the Echo State Network: The number of RNN units 
was chosen to be N=800. The input weight matrix Win(185x800) 
was fully connected with unity values. The recurrent connection 
matrix W had 1% randomly chosen non-zero weights. Moreover, 
we fixed all the non-zero weights to a value 0.5. Further, the 
parameters {a, C, µ} were set to {1,0.7,1}. Setting the spectral 
radius is crucial for this problem as it controls the dynamics and 
memory of the echo-states. Higher values are required for slow 
output dynamics and vice-versa. For the experiments in this 
paper, we used a spectral radius of 0.79. The output feedback as 
well as the direct connections between inputs and the linear 
mapper were turned off. The network state is set to zero initially. 
Training inputs were forced through the network and the states 
were updated using (1). The first 400 echo state outputs were 
discarded as transients. Remaining 5000 outputs were used to 
train the linear mapper.  
Design of the Linear Mapper Using Sparse-LMS: The outputs 
from the RNN reservoir and the corresponding hand positions 
were used as training inputs and desired outputs respectively. 
The linear mapper is a matrix comprising of two column vectors 
wx, wy, each of length 800. The constraint parameters p, α were 
set to 1 and 1.5 respectively. The step-sizes for the weights (8) 
and the Lagrangian updates (6) were both chosen to be 1e-3 and 
β was set to unity. The training was done for 20 epochs after 
which there was no significant reduction in the MSE.  

Results and Discussions: Fig.2 shows the evolution of the 
Lagrangian term λk. Clearly, they converge to zero, which 
implies that the final weight vectors satisfy the imposed L1 norm 
constraints. Fig.3 shows the learning curve for the weights. The 
residual MSE for the X direction is slightly more than that of the 
Y direction. A histogram of the weight vectors is plotted in fig. 
4. Observe that most of the weights are zero, which demonstrates 
the sparseness of the weight matrix. Fig.5 shows the performance 
of the models on test data. Only the first 500 samples out of 

3000 are shown here for clarity. The outputs of the linear mapper 
were then lowpass filtered by a 4th order Butterworth filter with 
normalized cutoff frequency of 0.2. The low pass filtering 
smoothens the output as the BMI interfaces with a robot arm.  

The performance along Y is better and is evident from the 
overall correlation coefficients of {0.64, 0.78} for X and Y 
directions respectively. We further calculated the short-term 
correlation coefficients (fig. 6) over non-overlapping windows of 
100 samples. It is clear that the short-term correlation 
coefficients are time varying for X and the model performs better 
only in short patches. This has been reported for other linear and 
non-linear models applied to this data [9]. A linear filter with ten 
tap delays per channel (totally 185x10x2 weights) gave 
correlation coefficients of {0.64, 0.75}. The RMLP with 185 
inputs, 5 hidden nodes, and 2 outputs, gave correlation 
coefficients very similar to the proposed approach. By using 
weight decay, it is possible to reduce the number of parameters 
in the linear and RMLP models, but choosing a decay parameter 
is not trivial (requires a cross validation set for optimality). The 
proposed sparse LMS algorithm will automatically zero out the 
undesired parameters with an L1 norm constraint.  
 

5. CONCLUSIONS 
 

This paper presents the use of Echo State Networks combined 
with static optimal and sparse linear mappers as a decoding 
algorithm for a BMI. ESNs provide a representational recurrent 
infrastructure that brings the information from the past of the 
input into the present sample without adapting parameters. The 
short-term memory of the ESNs is designed apriori thereby 
requiring only an adaptive linear or nonlinear regressor (static 
mapper) to implement functional mappings. As demonstrated 
here, they perform at the same level as other linear and nonlinear 
methods. However, the training can be done on-line in O(N) 
time, unlike the Wiener or the RMLP that have O(N2) training 
algorithms. The number of trainable weights is also lower than 
each of these networks, and more importantly, ESNs will scale 
up much better. In fact, we believe that the recurrent reservoir 
also contains information for velocity and force mappings, which 
means that different regressors can capture these mappings in 
parallel. All these features (performance, scalability, data 
requirements, and algorithmic complexity) are very important for 
a practical BMI. We carefully designed the read out portion of 
the ESN to guarantee maximal generalization. We implemented 
an on-line procedure that adaptively creates a sparse 
interconnection matrix based on a L1 norm penalty. This is 
novel, because weight decay uses an L2 norm and moreover, one 
has to optimally set the forgetting factor on a cross validation 
data set. ESNs hold the promise of better performance and 
flexibility to design practical BMIs. However, the claim has to 
be quantified on different data sets and the overall generalization 
ability has to be observed. Lastly, we would like to mention the 
appeal of the ESN as a biologically plausible computational 
model. If one thinks of the echo states as neuronal states, we can 
see how a distributed, recurrent topology is capable of 
representing information about past inputs into a diffuse set of 
states (neurons). For the most part, the interconnectivity and the 
value of the weights (synapses) are immaterial for representation. 
They become however critical for readout (approximation). In 
this respect, there are very close ties between ESN and liquid 
state machines, as observed by Maas. These ideas may become  



 

 

 

useful in developing new distributed paradigms for plasticity and 
characterization of neuronal response in motor cortex. 
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     Figure 2.  Convergence of the Lagrangian terms λ 

Figure 3.  Learning curve  

    Figure 4.  Histogram of the weights  

Figure 5. Model output and the desired output

          Figure 6.  Windowed correlation coefficients 
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