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Abstract. Tracking time-variant systems has been of great interest in many
engineering fields. Specifically, when system statistics change both in space
{mmltivariate) and time with a short stationary regime, conveational adaptive
algorithms suffer from the trade-off between convergence rate and accuracy.
In this paper, we propose a fracking system consisting of a linear adaptive
system accompanied by an on-line variable selection algorithm that is based
on the least angle regression algorithm, This algorithm expliciily employs
local {in time)} correlation between the input and the cutput of an unknown
system to select a subset of input variables at every time step, Therefore, it
enables the multivariate adaptive filter to track the temporal changes of
correlated variables, Simulations involving tracking of multi-channe] time-
variant systems demonstrate superior performance of the proposed approach
when compared with the conventional methods.

INTRODUCTION

Identification of the time-variant systems has been one of the most important
problems in many areas, including automatic control, communication systems,
biological systems and signal processing. Adaptive filtering algorithms have been
widely used to model any unknown system by adjusting a set of parameters with
the given input-output data [1, 2]. In a nonstationary environment the adaptive
filter must track the time-varying statistics of the unknown system. The least mean
squares (LLMS) and the recwrsive least squares (RLS) algerithms have been the
most popular methods for training linear adaptive systems, and their tracking
abilities in nonstationary environment has been well studied for the single input
single output (SIS0} case [2.3,4,5]. However, the performance of these methods
may be limited when both spatial (across inputs) and temporal statistics of the
input change with time. These changes in space and time often cause different
subsets of the inpuis to be involved in the mapping propertics of the unknown
system. In such cases, variable (or feature) selection techniques that select a subset
of input variables by certain critetia may play an important role in enhancing the
identification performance.

Numercous methods for variable selection have been developed including subspace
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projection, neural networks, support vector machine, and clustering [6]. Most of
them, however, have been designed to work in a stationary environment.
Therefore, the application of the variable selection methods to identification of
time-variant systems requires a novel approach that is able to track the spatio-
temporal change of the underlying system.

The purpose of this paper is two-fold: Firstly, we develop an on-line variable
selection algorithm for system identification by simplifying the least angle
regression algorithm proposed by Efron et al. [7). This algorithm is capable of
selecting most correlated input variables that are unknown a priori which also
change over time. Secondly, we demonstrate enhanced tracking performance by
combining the on-line variable selection algorithm with a linear filtering algorithm
(LMS). Simulations demonstrate the superior tracking capability of the proposed
approach compared with the case when only the LMS algorithm is used.

THE LEAST ANGLE REGRESSION ALGORITHEM

The least angle regression (abbreviated LARS) algorithm has been recently
developed to accelerate computation and improve performance of forward model
selection methods [7]. It has been shown in Efron ef al. that simple modifications
to LARS can implement the LASSO (Least Absolute Shrinkage and Selection
Operator} [8] and the forward stagewise linear regression [9]. The LARS
algorithm requires the same order of magnitude of computational complexity as
ordinary least squares.

The selection property of LARS, which leads to zeroing coefficients, is preferable
for identification of sparse systems when compared to methods with regnlarization
based on L,-norm penalty [10] and popularized in the weight decay technigues of
neural networks [11]. Also, an analysis of the selection process often provides
better insights into the unknown system than shrinkage methods based on the L,-
norm,

The LARS procedure siaris with an all zero coefficients initial condition. The
input variable having the most correlation with the desired response is selected.
We proceed in the direction of the selected input with a step size which is
determined such that some other input variable gets to have as much correlation
with the current residual as the first input. Then, we move in the equiangular
direction between these two inputs until the third input has the same correlation.
This procedure is repeated until either all input variables join the selection, or the
sum of coefficients meets a preset thresheld (constraint). Note that the maximum
correlation between inputs and the residual over each selection step decreases in
order to de-correlate the residual with the inputs. We summarize the details of the
LARS procedure [7] in table 1.

These techniques have been applied to variable selection in multivariate data
analysis (static problems), but due to its computational efficiency, LARS can
effectively provide a tool for time varying mode! selection with the Li-norm
penalty similar to the LASSC. However, since LARS selects input variables by
computation of correlation using the entire data set, it assumes stationary statistics.
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In this paper, we will present a modified version of LARS which selects the most
correlated input variables locally in time, thereby removing the stationarity
limitation, which is conducive for real-time system identification problems.

Given an NxM input matrix X (each row being M-dimensional sample vector),
and an Nx1 desired response matrix Y, initialize the model coefficient £ =0,
for i=1,...,M, and let B=[A,, ..., Bul”
Then the initial LARS estimate becomes, Y = Xp=0.

1

1~ N, 1~
Transform X and Y such that sz'j =0, —Xxz=1,and =3y, =0 forj
=l

isl Nia Ni

=1,., M

The current correlation ¢ =X (Y- \A{') )
Let Grar= max e, [} and 4 = 4 lof = Crad- @

J

Let X, ={...,sign(¢)x, ...} forje 4. 3
Let ® =X,” X,, and o= (1,/®'1,)" )
where 1, is a vector of one’s with a length equal to size of 4.

The equiangular vector p = X (o@1,) (&)

has the unit length and the property such that X,u = o1, (angles between all
inputs in 4 and p are equal).

©

Crge —€i Coax +€;
Compute the step size, y = min}*ﬂc{ i B AL

a-6;, = a+#d,
where min® indicates considering only positive minimum values over possible J.
Also & is defined as the inner product between all inputs and p such as,

&= T 7
3=Xn <)

Update Y, =Y + ¢ (8)

Repeat (1)}-(8) until all inputs join the active set 4, or Z[ﬁjl exceeds the given
J

threshold.

Table 1. Outline of the LARS algorithm.

LOCAL IN TIME VARIABLE SELECTION BASED ON LARS

Correlation between inputs and the desired response can be accomplished by
recursively updating the correlation vector. The input covariance matrix can also
be estimated recursively. If one decouples the variable selection part from the
mode]l update part in LARS, we can select the input variables locally with
recursive estimates of correlations. The modified version of LARS for on-line
variable selection is as follows.

As stated in [7], the time correlation (step 1 in table 1) at a given step can be
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simply updated without computing residuals,

(k) =cfk) - ¥ )
for the B* step of variable selection. Hence, the update procedure of (8) in table 1
can be removed. The initial correlation c¢4(0), which represents the correlation
between inputs and desired response can be estimated outside of the LARS
routine. Instead of computing the correlation with entire data, we can recursively
estimate the correlation using a forgetting factor (leaky integrator), given by

p(r) = (1-p)pin-1)+ pd(m)x(n)) (10)

where p is the parameter controlling memory depth, and x(n) is an IxM input
vector at time instance #. This estimate of the correlation vector at a given time
instance, p(») is utilized by the LARS routine such that ¢{0) = p{r).
For the computation of the covariance matrix @ in (4), we also estimate the input
covariance matrix using the leaky integrator in the same way as (10),

R(n) = (1-OR(n-1)+ Ax(n)'x(m)) (an

where & is another step size for covariance estimation. This matrix is not directly
used in (4) since @ is the covariance of only subset of inputs. Also, the input
vectors are multiplied by the sign of correlations before computing ®. Therefore
we need to introduce a diagonal matrix S whose elements are signs of ¢;(k) forj &
A. Then @ can be computed using R(#m) and 8 as,

®=SR,S (12)

where R, is L,;xL, (L, is the length of 4) matrix representing covariance among the
selected input variables. R, can be given by elements of R(n), i.e., ry for i, j = 4.
To remove the computation of the equiangular vector g that requires a batch
operation, we incorporate equation (3) into {7) such that,

G=Xp=-X"X (e0'1)=aX X, 071, a3

However, X'X, is nothing but the /* columns of R@r), for j € 4 followed by
muliiplication with 8. So if we let R,.,; be a submatrix of R(n) consisting of the j'”
columns forj € 4, then

6= ¢ Ryt S'1, (14

Hence, using © obtained by R(n) and 8, we can compute o and consecutively &
for j € A. This modification removes the computaticn of the equiangular vector in

(5) which is not directly required for computing & and y in (6). Table 2
summarizes this modified version of the LARS algorithm.

LINEAR ADAPTIVE SYSTEM WITH ON-LINE VARIABLE SELECTION

In our architecture, we combine a linear adaptive system with the on-line variable
selection algorithm described in the previous section. Accordingly, the on-line
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Given an A>M input matrix X (each row being AM-dimensional sample vector),
and an Nx1 desired response matrix Y, initialize p{0) =0 and R(0) =0

Transform X and Y such that

L%x.. =0 L%xz =1, and i§ ;=0 forj=1,..M
Nia? NS Ni:lylh I e
Update the correlation: p(n) = (1-p)p(n-1)+ Ad(n)x(7))
Update the input covariance: R(n) = (1-dR(#-11+ Kx(n)'x(n))
Let ¢(0) = p{n).

Fork=0,..., M-1

Let Crar= max e, f, and A = {2 ) = G
J

Compute 2 diagonal matrix § with elements of sign of (k) forj € 4.
@ =SR,S,

where R, is submatrix of R(x) with /* rows and j* columns for j € 4.
o= (101"

6= a Ry ST1,

where R, is 2 matrix consisting of /* columns of R(n) for j € 4.

) Chax = €5 Ciax 7€
Compute the step size, y = min|_c T
& a8, a+d;

Update correlation: ¢4k) = ¢ (k) - 6.

Table 2. The modified LARS algorithm for on-ling variable selection.

selection algorithm selects input variables before updating the weights at any
given time sample. Then, only the weights corresponding to the selected inputs are
updated by the least mean squares algorithm (LMS) [5]. This instantanecus
preprocessing of inputs enables the adaptive system to selectively update weights

v(#)
x(x) -—bl Target system, h{z} > d(12)
l < +
Recursive estimation of Linear a_gi"a.ptive -
p(#) and R{n) sysfem :
win) H
< v
{L Sesmnrnramenrinnrnns LMS

(On-line variable
selection algorithm

Figure 1. A block diagram of the linear adaptive system with on-line variable selection. h{»)
and w(#) denote the target and adaptive system weight vectors, respectively, and v(s1) is the
measurement noise added to the desired response.
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based on a new least angle regression ctiterion. Fig. 1 illustrates the architecture of
the linear adaptive system with the on-line variable selection algorithm. Note that
the current weight vector is fed to the selection algorithm. This weight vector is
used by the algorithm to stop the iteration when the absolute sum of weights
reaches a given threshold.

The benefits of on-line variable sefection will become apparent in the multivariate
input case where only a subset of inputs is primarily involved to generate the
system outputs. Two major benefits of using this online variable selection are: it
can reduce the degrees of freedem of the model to enhance the generalization
performance, and it can allow faster learning of the subsequent model, which
improves tracking performance. Hence we will apply the linear system with the
on-line variable selection algorithm for tracking a time-variant system in which
only a subset of inputs are correlated with outputs. The comparison with the
standard LMS will demonstrate the improvement in tracking performance.

COMPUTER EXPERIMENTS

In our experiment, we assume a static {i.e. constant value) multi-channel system
that changes its parameters at certain time instants. For each period between
changes, only a subset of parameters has non-zero values. We present results of
two adaptive systems trained by the LMS with variable selection and LMS only.
The weights of the system are updated with the straight LMS for all the weights,
while with variable selection only weights corresponding to the selected channels
are updated as

wint1) = win) + nge(n)x(n), forj € 4 (15)

“ where 4 is a set of input channe! indices which are selected. The first simulation
tracks a time-variant system with M chamnels and sparse constant weights that
change every 50 samples. The change occurs three times during the simulation so
that there are four stationary regions with duration of 50 samples (total number of
samples is N = 200), During each stationary regime, only X of M weights, which
are generated from a Gaussian distribution, have nonzero values. The setup of K 1s
randomly chosen from a uniform distribution ranging between M/2-2 to MI2+2.
The tracking system does not have a priori knowledge about which weights have
nonzero values for each regime. Further, the sum of magnitudes of weights for
each period is set to unity. Input variables are also generated independently from a
Gaussian distribution with zero mean and unit vartance. The desired output of the
system is further corrupted by white noise whose power is determined by the
signal-to-noise ratio (SNR}. Therefore, the system parameters include the number
of input channels (M) and the SNR of the desired response.

The second experiment tracks a nonlinear time-variant system. The setup is similar
but the desired signal is generated as

d(n) = tanh(B(n)x(m)” ) - 0.5 cos(m)x(n)") (16)

where h(n) is an M-dimensional constant weight vector generated in the same way

128



as above. Commonly used measures of tracking assessment such as the steady-
state mean squared deviation and the steady-state excess mean squared error are
utilized here [12]. The mean squared deviation between the true weight vector h{n)
and the learned weight vector win) is defined as

D=1lim Emh(n) - w(n)||2] 17
n—o

The excess mean squared error is defined as

& = lim Ele(m)*1-o” (18)
B0

where o is the variance of white noise added to the desired response. Since there
are four stationary regimes that have different weight vectors hn), D) and £ are
evaluated in each regime. To evaluate the mean performance, we conducted 160
Monte Carlo runs for each experiment.

In order to determine the learning rate (7) for the LMS (with or without variable
selection), we perform an exhaustive search and choose the learning rate that
yields the best tracking performance for the given data. Since there is a tradeoff
between the mean squared deviation and the excess mean squared error [5], the
learning rate is chosen by imposing equal imporiance to both performance
measures, D and £ We experimentally evaluate D and & (averaged over four
stationary regimes) by scanning through a possible range of 1, and pick the one for
which (D + £)/2 is minimum. This searching procedure is conducted for both
systems with and without variable selection, and also for every case of M and SNR
Fig. 2 illustrates this procedure by showing plots of performance measures
evaiuated for different learning rates, with the straight LMS and the LMS with
variable selection respectively. Other parameters for variable selection are set as
{p, 8} ={0.1,0.1}.

The evaluation results of D and £ based on the above setting of parameters are
summarized in table 3. In the table, the ratio of D and £ for the LMS with on-line
variable selection versus D and £ for the straight LMS is presented for different

|
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(2) b

Figure 2. [llustration of the selection of the learning rate: the experimental results of D (thin
solid line), £ (dotted line), and (D+&)/2 (thick solid line) for a range of learning rates for (a)
the straight LMS, and (b) the LMS with variable selection. In this example, we set AM=6,
and SNR=30dB. The selected leaming rates are 0.052 in (2), and 0.083 in (b).
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M 8 16 24
SNR 30dB 0dB 30dB 0dB 30dB 0dB
_ 0.43 0.78 0.26 0.77 0.50 0.76
pselection 0.40 0.81 0.18 0.72 0.37 0.65
Y 0.59 0.75 0.16 0.71 0.33 0.60
0.49 0.78 0.15 0.75 0.30 0.64
. 0.41 0.77 0.26 0.75 0.49 0.75
grereeron 0.37 0.82 0.18 0.71 0.36 0.66
P 0.60 0.73 0.15 0.72 0.31 0.61
0.49 0.78 0.15 0.74 0.29 0.65

Table 3. Mean ratios of D and & for different M and SNR in each stationary regime,

values of M and SNR.

Fig. 3 shows the comparison of learning dynamics between the LMS with on-line
variable selection and the straight LMS. It presents the average ratio of E[||h(r)-
w(n)||1] for the LMS with on-line variable selection to that of the straight LMS in
different cases of M and SNR in linear system tracking. The results show that the
trajectory of the ratio is less than unity most of the time, which indicates the
superior performance of the LMS with on-line variable selection. Note that
variable selection becomes less effective with decreasing SNR as the correlation
estimates are noisy.

More details on variable selection are described in Fig. 4. The selection error rate,
which is the ratio of the false selection to the total number of variables, is averaged
over 100 Monte Carlo simulations. This rate decreases with time in a given
stationary region since the algorithm is utilizing more samples to estimate
correlation. Fig, 4a shows the effect of the feedback parameter for the leaky
integrator (o in eq.10) used to estimate correlation. Smaller values of g indicate
larger memory depth. 1t empirically shows that the parameter o must be set in the
middle of the convergence range [0,1] while the selection error is minimized
around p= 0.1. The choice of p, however, may vary depending upon the data. Fig.
4b shows the effect of the SNR by comparing error rates with different levels of
the SNR. The error rate increases approximately by 20% as the SNR drops by
30dB near convergence in each stationary segment.

M=8

o 100 200 0 100 200 0 100 200
Figure 3. Evolution of the ratio of DD quring linear system tracking over 200

samples {(four 50-sample stationary segments). The thick line denotes the ratio for SNR =
30dB and the thin line denotes for SNR = 0dB.
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Figure 4. Evolution of the selection error percentage averaged over 100 Monte Carlo
simulations (M = 16) during tracking: (a) Effect of different feedback parameters in the
leaky integrator, and (b) Effect of the SNR on the selection error percentage.
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Figure 5. (a) Evolution of the ratio £°"/Z*5 ot yracking a nonlinear system. (solid line:
SNR = 30dB, dotted line: SNR = 0dB). (b) Comparison of the selection error percentage
between linear and nonlinear system tracking (M = 16 and SNR = 0dB). The solid line
presents the ratio for the linear systemn, and the dotted line represents the nonlinear system.

Fig. 5a shows trajectories of the excess mean squared error ratio computed for the
nonlinear system (M = 16). The SNR is kept constant at 30dB. It is obvious that
the improvement with variable selection for a nonlinear system is much lesser than
the linear case, which reflects the fact that the selection algorithm is based on the
linear correlation measures. Hence the algorithm has more chances of incorrect
selection for a nonlinear system than for a linear one. This is presented in Fig. 5b
in which the selection error rates for linear and nonlinear systems are compared.

CONCLUSIONS

We have proposed an on-line variable selection algerithm that simplifies the
LARS forward model selection algorithm. With the experimental design involving
a system with time-variant sparse input-output mapping, the proposed architecture
combining the linear system with the on-line variable selection algorithm has
shown superior tracking capability. We hope that the demonstration in this paper
may provide many possibilities of enhancement for a variety of practical fields
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where time-varying selection of variables are of great importance to infer the
target system. In particular, this algorithm may be useful for the identification of
time varying multi-input multi-output (MIMO) systems, which is basically an
unexplored area. Further studies of the application of on-line variable selection to
MIMO systems will be presented in a follow-up paper.

The marginal improvement in identification of the nonlinear time-~variant system
has motivated us to consider more general criteria to select variables. One
approach would be to utilize distance metrics such as mutual information [13]
between the inputs and the residuals. With recently developed methods that
stochastically estimate Renyi’s entropy [13], we hope to perform time-variant
variable selection based on information theoretic criteria.
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