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Abstract, Multivariate density estimation is an important problem that is
frequently encountered in statistical learning and signal processing. One of
the most popular techniques is Parzen windowing, also referred to as kernel
density estimation. Gaussianization is a procedure that allows one to estimate
multivariate deasities efficiently from the marginal densities of the individual
random variables. In this paper, we present an optimal density estimation
scheme that combines the desirable properties of Parzen windowing and
Gaussianization, using minimum Kullback-Leibler divergence as the
optimality eriterion for selecting the kernel size in the Parzen windowing step.
The performance of the estimate is iflustrated in a classifier design example.

INTRODUCTION

In statistical machine learning and statistical signal processing we frequently
encounter the problem of estimating the probability distribution of the observed
data, which is typically multidimensional, The literature has extensively dealt with
this fundamental problem using one of the three main approaches: parametric,
semiparametric, and nonparametric, Traditionally, parametric approaches have
been adopted widely, which combined with Bayesian techniques such as
maximum likelihood (ML} and maximmum o posteriori (MAP) parameter
estimation yield iractable and in many cases useful solutions under the
assumptions made [1]. Advances in machine leaming and signal processing
techniques require less restrictive assumptions, thus parametric techniques became
less desirable. Consequently, semiparametric and nonparametric density estimation
approaches have become the focus of statistical learning research.

Semiparametric density estimation technigques offer solutions under less
restrictive assumptions regarding the data structures. The most commonly used
semiparametric method is the so called mixture model, which allows the designer
to approximate the data as a two-step mixture of parametric distributions, where
each parametric model is also associated with a prior probability of being selected
for data generation [2]. Especially the Gaussian mixture model is widely utilized
due to ifs asymptotic universal approximation capability that arises from the theory
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of radial basis function networks. However, selecting the number of medels
becomes a nontrivial problem.

On the other hand, nonparametric approaches often allow the designer to
make the least restrictive assumptions regarding the data. Density estimation
techniques in this class include histograms, nearest neighbor estimates, and kernel
density estimates (referred to as Parzen windowing) [1]. Parzen windowing is a
generalization of the histogram technique, where smoother membership functions
are used instead of the rectangular volumes typically used in histogram binning.
Although asymptotically Parzen windowing can yield unbiased and consistent
estimators, in the finite sample case, selecting the kernel function and the kemel
size become a challenging problem. Especially in multidimensional density
estimation, in general, the full covariance matrix of the kemel must be optimized
{assuming elliptically symmetric kemels). Some methods go even further by
incorporating the nearest neighbor density estimation approach and try to optimize
the kernel size/covariance for cach sample based on its nearest neighbor distances
[3]. Unfertunately, all these techniques become intractable and ineffective when it
comes to on-line adaptive learning and signal processing, due to increasing
computational complexity, as well as discontinuities in gradients introduced by
switching neighbors.

In this paper, we will describe a multivariate density estimation method that
follows Parzen windowing in spirit. We will use Parzen windowing to estimate
marginal distributions (nonparametrically) from the samples. The kemel size in
Parzen windowing will be optimized to minimize the Kullback-Leibler divergence
{KLD) of the true marginal distribution from the estimated marginal density. The
estimated marginal densities will be used to transform the random wvariables to
Gaussian-distributed, where joint statistics can be simply determined by sample
covariance estimation.

GAUSSIANIZATION

Given an n-dimensional random vector X with joint probability density
function (pdf} f{x), there exist infinitely many functions h:R"—>R" such that
Y=h(X) is jointly Gaussian. We are particularly interested in the elementwise
Gaussianization of X. Suppose that the /* marginal of X is f(x), with a
corresponding cumulative distributien function (cdf) Fx;). Let ¢(.) denote the cdf
of a zero-mean unit-variance single dimensional Gaussian variable:

4
#(O) = j-\/%e“"z”da ‘ ()

According to the fundamental theorem of probability [4], ¥; = ¢'I Fi(X;) isa
zero-mean and unit-variance Gaussian random variable. Consequently, we
consider the element-wise Gaussianizing functions defined as h; (&) = ¢ (F; (&N

Combining these marginal Gaussianizing functions for each dimension of the data,
we obtain the Gaussianizing transformation h:'R"—R". Note that after this
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transformation (whose Jacobian is diagonal everywhere) we obtain a jointly
Gaussian vector Y with zero mean and covariance

T = E[YY") )
Hence, if the marginal pdfs of X and the covariance Z are known (or estimated
from samples), the joint pdf of X can be obtained using the fundamental theorem
of prebability as
gz(h( )]
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where gz denotes a zero-mean multivariate Gaussian distribution with covariance
Z and g denotes a zero-mean univariate Gaussian distribution with unit variance.

OVERVIEW OF THE PROPOSED METHOD

The proposed joint density estimation is based on (3). Density estimation is
carried out using a set of independent and identically distributed (iid) samples
{X,...,3x} drawn from the joint density Ax). In summary, the marginal
distributions f{.) are to be approximated using single dimensional Parzen window
estimates. The estimated marginal pdfs are denoted by fi(.). The kemnel sizes in
the Parzen window estimates for each dimension are optimized using the minimum
KLD (equivalently maximum likelihood} criterion. This procedure will be
described in detail in the nexi section. From these estimates, approximate
Gaussianizing transformations I;,-(.) can be easily constructed as described in the
previous section. Assuming that these estimated transformations convert the joint

data distribution to Gaussian, the covariance matrix is simply estimated from the
samples using

A R S
j=1

where §; = h(x i) . In this second phase of the procedure, we basically assume

that the samples { ¥,....¥ » } are jointly Gaussian with zero-mean and assign the
sample covariance as the parameters of the underlying Gaussian distribution. This
is equivalent to selecting the maximum likelihood parameter estimates for the
underlying Geussian density, which is also equivalently a2 minimum KLD
estimate, as we show next.

It is well known that asymptotically maximum likelihood density estimation
becomes identical to minimum KLD estimation. In particular, if the underlying
distribution for X is g{x) and the parametric family is pg(x), then

' Note that the tme diswribution of the (approximately) Gaussianized samples has a mean of zero,
Therefore, the unbiased sample covariance estimate should be as given in (4), without a correction term
due to data dimensionality in the denoménator.
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Figure 1. This is an illustration of the proposed joint density estimation procedure.
Optimization is carried out in two steps. The marginal density estimates are determined by
minimizing the KLI}, which is equivalent to minimizing some form of divergence between

the estimated and actual Gaussianizing transformations, denoted by h and h. The
divergence between the approximately Gaussianized distribution py and the true

Gaussianized distribution gy, is approximately minimized by projecting py. to the manifold
of Gaussian distributions using KLD to obtain gy . This is possible due to the Pythagorean
theorem for KLD.

H:;m D (q(x) || po(xp) = max Eq4(po(X)) (%
where we used the following definition for KLD:
Dy (400 1| p() = faxy10g LE o ©
P(X)

Consequently, the proposed procedure for estimating the joint distribution of a set
of iid samples equivalently minimizes the KLD in an approximate manner as
illustrated in Fig. 1. The KLD between the estimated and actual marginal
distributions is minimized to obtain an accurate estimate of the true Gaussianizing
transformation h. This optimization is performed in a consirained manner in the
manifold of separable distributions in the pdf space. However, due to estimation
errors, an imperfect transformation h is obtained. The corresponding transformed
distribution py is projected optimally to the manifold of Gaussian distributions to

obtain g% which is a better approximation to gy, due to the Pythagorean
Theorem for KLD [5]. The final density estimate is obtained by employing the
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inverse transformation h~! to g5 - Clearly, as the number of samples increase, the

estimated joint distribution will approach the true underlying data distribution.

In this paper, we propose using Parzen windowing to estimate the marginal
distributions, which are necessary to determine the Gaussianizing transformation
for the data. However, any other density estimation procedure could easily replace
Parzen windowing within the general framework presented here,

UNIVARIATE PARZEN WINDOW DENSITY ESTIMATION

Parzen windowing is a kernel-based density estimation method, where the
resulting estimate is continnous and differentiable provided that the selected kernel
is continuous and differentiable [3,6]. Given a set of iid scalar samples {x;,...,xn}
with true distribution f{x)}, the Parzen window estimate for this distribution is

. 1 &

fo=+ %‘,KU (x=x;) Y]

In this expression, the kernel function K, (.) is a continuous and smooth, zero-
mean pdf itself, typically a Gaussian. The parameter & controls the width of the
kemel and it is referred to as the kernel size. This pdf estimate is, in general,
biased, since its expected value is E[f(x)]= f(X)*K, o (x), where * denotes
convolution. The bias can be asymptotically reduced to zero by selecting a
unimodal symmetric kernel function (such as the Gaussian) and reducing the
kernel size monotonically with increasing number of samples, so that the kemnel
asymptotically approaches a Dirac-delta function. In the finite sample case, the
kernel size must be selected according to a trade-off between estimation bias and
variance: decreasing the kernel size increases the variance, whereas increasing the
kemel size increases the bias. In particular, the kernel size should be reduced
slower than 1/N, in order to guarantee asymptotic consistency. To illustrate the
effect of kernel size on the estimated density, Parzen pdf estimates of 50-sample
sets of Laplacian and uniformly distributed samples with small and large kernel
sizes are shown in Fig. 2.

For accurate density estimation, variable kernel size methods are proposed in
the statistics literature [3]. However, for our purposes (i.e., adaptive signal
processing) such approaches to density estimation are not feasible due to increased
computational complexity. The complexity of information thecretic methods based
on Parzen density estimates are already O(N?) in batch operation mode [7-12].
Assigning and optimizing a different kernel size for each sample would make the
algorithmic complexity even higher.

Therefore, we will only consider the fixed kernel size approach where the
same kernel size is used for each sample. This parameter can be optimized based

* The generalized Gaussian density family is described by Gg(x)=Crexp(-Ca | Iﬁ ), where C, and

C; are positive constants and 8 is the order of the distribution. Laplacian and uniferm distributions are
special cases corresponding to f= 1 and =0,
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Figure 2. Laplacian and uniform distributions estimated using Parzen windowing with
Gaussian kemels (kernel size indicated in titles) with 50 samples from each distribution.

on various metrics, such as the integrated square error (ISE) between the ¢stimated
and the actual pdf, as discussed by Fukupaga [13]. In actuality, the ISE approach is
not practical, since the actual pdf is unknown. However, certain approximations
exist. For a Gaussian kernel, Silverman provides the following rule-of-thumb,
which is based on ISE and the assumption of a Gaussian undetlying density:

o =1.060 y N~ />, where oy denotes the sample variance of the data [14]. More

advanced approximations to the ISE solution are reviewed in [15].

Maximum likelihood (ML) methods for kernel size selection have also been
investigated by researchers. For example, Duin used the ML principle to select the
kemnel size of a circularly symmetric Gaussian kemel for joint density estimation
with Parzen windowing [16]. More recently, Schraudolph suggested optimizing
the full covariance matrix of the Gaussian kemel using the ML approach [12]. In
joint density estimation, another option is to assume a separable multidimensional
kernel (whose covariance is diagonal in the case of Gaussian kernels). Then, one
only needs to optimize the size of each marginal kemel using single dimensional
samples corresponding to the marginals of the joint density being estimated. The
latter approach has the desirable property that the kernel functions used for
marginal density estimation uniquely determine the kernel function that is used for
joint density estimation, in addition to the fact that the marginal of the estimated
joint density is identical to the estimated marginal density using this type of
separable kernels [10]. In this latter approach, the joint density estimate becomes

N n
7@ =5 2 T ] Ko, 6 -55) ®)
i=l k=1
where x* denotes the k™ entry of the vector x and the multidimensional kerne! is
the product of unidimensional kernels, all using appropriately selected widths.
In this paper, motivated by the graphical description of the method in Fig. 1,
and the fact that optimality of density estimates need to consider the information
geometry of certain manifolds in the pdf space [17], we assume the minimum
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KLD criterion. Recalling the equivalence between minimum KLD and ML
principles pointed out in (5), the ML approach twms out to be optimal in an
information theoretic sense after all.

OPTIMIZING THE KERNEL SIZE

In this section, we will focus on the optimization of the kernel size in Parzen
window density estimates for single-dimensional variables, Consider the density
estimator given in (7). Qur goal is to minimize the KLD between the true and the

estimated densities fx) and f (x). Equivalently we will maximize the log-

likelihood of the observed data, ic., Ey[log/(X)]. The expectation is
approximated by the sample mean, resulting in

N

1 .

J(@) =5 > log f(x)) ©)
Jj=t

For Parzen windowing this becomes

18 (1
J(U)=7v-210g ﬁch("f -x;) (10)
Jj=l i=1

If a unimodal and symmetric kernel function (such as Gaussian) is used, this
criterion exhibits an undesirable global maximum at the null kemel size, since as o
approaches zero, the kemel approaches a Dirac-& function and the criterion attains
a value of infinity. To avoid this situation, the criterion needs to be modified in
accordance with the leave-one-out technique, This yields

| & .
o)== 2 log ﬁ_Z{ca(x,-—x,-) ()
Jj=1 =1, }

A similar approach for optimizing the kernel size was previously proposed by
Viola et al. [18], where the available samples were partitioned to two disjoint sets:
{x1,....xa} and {xpq,..., %y} While one set was used in the density estimation, the
other was used in the sample mean. If desired, a generalized version of (11) could
be obtained along these lines using a leave-M out strategy; however, this would
increase the computational complexity of evaluating the cost function in a
combinatorial way in proportion with M.

EXPERIMENTS

Kernel size optimization: In our first ¢xperiment, we will investigate how
well the kernel size optimization procedure described above approximates the
actual optimal kernel size according to the minimum KILD measure. For this
purpose, we have performed a series of Monte Carlo experiments to evaluate the
value of the proposed kemel size optimization procedure for marginal density
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N= N= N= N- N= N= N= A=
50100 150 200 50 100 150 200
=1 056 048 045 041 f=1__051 038 030 031
=2 050 038 038 038 f=2__049 041 041 036
=3 043 037 034 030 B=3___ 043 035 034 031
=5 034 027 025 024 f=5 034 028 026 023

Table 1. Average optimal Gaussian kernel — Table 2. Average optimal Gaussian kernel
sizes for unit-variance generalized Gaussian  sizes for unit-variance generalized Gaussian
distributions of order j for Parzen estimates  distributions of order S for the true KLD.
using N samples.

¢stimation. For generalized Gaussian densities of order 1, 2, 3, and 5 (all set to be
unit-variance), using 20 independent experiments for each, the optimal kernel size
that minimizes (11) for a range of sample sizes were determined.’® Since the true
distributions are known, for each case, the true optimal kemel size wvalues
minimizing the actual KLD were also numerically determined. Tables 1 and 2
summarize the results, which demonstrate that the estimated kemel size values
match their theoretical values {within reasonable statistical vatiations).

MAP Classifier Design: In this experiment, we demonstrate the utility of the
propesed Gaussianization-based joint density estimation scheme for classifier
design. According to the theory of Bayesian risk minimization for pattern
recognition, a classifier that selects the class for which the @ posteriori probability
of the feature vector sample is maximized asymptotically minimizes the
probability of classification error (denoted by p,.). That is, in a two-class scenario
with class priors {p;p2} and conditicnal class distributions {f;(x)./3(x)}, the
optimal strategy to minimize p, is to select the class with larger {pf(x)}, i=1,2.

In practice, however, the class priors and the data distributions have to be
estimated from samples. In the nonparametric framework we pursued in this paper,
one could use either the Gaussianization-based estimate provided in (3) or the
product-kernel-based Parzen windowing method presented in (8). Both methods
could use the same KL-optimized marginal density estimates with the
corresponding univariate kernels. The difference is in the way they estimate the
joint distribution using the knowledge provided by the marginal density estimates,
At this point, we expect the former technique to be more data-efficient than the
latter, and the results we will show next confirm this hypothesis.

A set of Monte Carlo simulations is designed as follows. A finite number of
training samples are generated from twe 2-dimensional class distributions, which
are both Laplacian. Specifically, we used equal-prior identical distributions

fi(x) = e~ Pille yhose means were selected as pi=[=1 —1]7 and po=[1 17".

Due to symmetry, the optimal Bayesian classifier has a linear boundary passing
through the origin and has a slope of -1 in the 2-dimensjonal feature space.

* To minimize (11), first the samples of the scalar random variable under consideration are normalized
to unit variance. Then gradient descent is employed starting from a reasonable initial condition, which
is in the interval [0.5,1) for most unimedal data distributions.
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Figure 3. Probability of error for the three classifiers on a test set of 100 samples averaged
over 100 Monte Carlo runs for {a) different sizes of training set with fixed dimensionality
(b) different dimensionalities of training sef using fixed number of training samples.

For each of the training data set sizes of 50 to 250, we conducted 100 Monte
Carlo simulations. Three classifiers are designed using each training data set:
Gaussianization-based, Product-kemnel-based, and True-Bayesian. All classifiers
were tested on an independent set of 100 samples (genecrated randomly in each
experiment). Average probability error plots of these classifiers on the testing set
are shown in Fig. 3a. As expected, the True-Bayesian classifier yields the lower
bound, while the Gaussianization-based classifier outperforms the Product-kernel-
based classifier. These results demonstrate that the Gaussianization-based joint
density estimation procedure is extracting the higher-order statistical information
about the joint distribution more effectively than the product-kernel estimator.

In order to test the hypothesis that this method will avoid the so called curse
of dimensionality the experiment is generalized to more than 2 dimensions while
maintaining the same symmetry conditions. A set of 100 Monte Carlo simulations
under similar training and testing conditions are repeated for each data
dimensionality (using 100 training samples in every case). The results summarized
in Fig. 3b demonstrate that the Gaussianization-based density is able to cope with
the increasing dimensionality of the features given the same number of training
samples, while the product-kemel approach starts breaking down.

CONCLUSIONS

Nonparametric multivariate density estimation is an important and very
difficult ill-posed problem that has fundamental consequences in statistical signal
processing and machine learning, Here we proposed a joint density estimation
methodology that combines the Gaussianization principle with Parzen windowing.
The former effectively concentrates all higher-order statistical information in the
data to second-order statistics. The latter is a simple, yet useful density estimation
technique based on the use of smooth kernel functions, especially in univariate
density estimation. Here, the kernel size in Parzen windowing is optimized using
the minimum KLD principle.
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The proposed density estimation method, which approximately minimizes the
KLD by a two-step procedure, is shown to be more data efficient than Parzen
windowing with a structured multidimensional kernel. It is also demonstrated that
the curse of dimensionality is beaten (at least to the extent investigated here} by
the proposed method. Further investigation wili be conducted to test these
hypotheses on real data. Finally, note that although we have impesed the constraint
of a fixed kernel size with Parzen windowing for the estimation of marginal
distributions here, the overall estimation philosophy could be utilized with any
(and possibly more advanced) univariate density estimation techniques. Our
concern in making this selection was simple and tractable applicability to adaptive
signal processing and machine learning, rather than obtaining the best density
estimate, :
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