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 Abstract—The exact spatio-temporal changes leading to 
epileptic seizures, although widely studied, are not well 
understood yet. We propose to investigate the 
mechanisms leading to epileptic seizures by using a 
SOM-based Similarity Index (SI) measure. While it is 
shown that this measure is statistically as accurate as the 
original SI measure, it is also computationally faster and 
therefore applicable for real-time analyses. Application 
of SOM-based SI measure on epileptic seizure data 
reveals interesting aspects of synchronization and de-
synchronization at various spatio-temporal levels.  
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I.  INTRODUCTION 
 

Epileptic studies on adults and neo-nates have been 
widely researched. Researchers from different disciplines 
have contributed immensely in understanding the various 
neurological aspects leading to seizures. However, we still 
do not have a drug that cures this disease, nor, do we have a 
reliable technology to prevent its occurrence. 
Synchronization and de-synchronization between the 
cortical-columns of the brain are believed to be one of the 
plausible reasons for most neurological disorders including 
epilepsy [1]. It is believed that synchronization occurs due 
to both local and global discharges of the neurons. In 
quantifying this phenomenon, one of the main difficulties is 
that the brain is a highly complex, non-linear system. The 
spatio-temporal changes in information across different 
regions of the brain are rapid and often very subtle. 
Therefore, one way to understand how physiological 
activities are coordinated in the brain is to understand how 
subsystems are coupled and how information propagates 
through them. From the epilepsy perspective, quantifying 
the changes in spatio-temporal interactions could potentially 
help us develop seizure-warning systems. This 
quantification would also help us identify the regions that 
actively participate during epileptic seizures. 

Many linear and nonlinear techniques that address the 
quantification of synchronization exist in the multivariate 
analysis literature. Correlation and coherence are commonly 
used techniques, e.g., directed coherence (DC), partial-
directed coherence (PDC) [2]. The main drawback of these 
methods is that they only describe linear interactions, 
although the brain is known to be highly nonlinear. 
Instantaneous phase measures using Hilbert transforms and 
wavelet transforms have also been used to quantify 

synchronization [3]. However, the applicability of these 
measures is restricted to identifying phase locking between 
two signals. Secondly, for accuracy, signals are required to 
be narrow-band, which is unsuitable for ECOG signals. 
Generalized mutual information function (GMIF) [4] is 
popularly used, however, this approach requires large data 
sets for probability density estimation, and is 
computationally expensive. Variants of recurrence plots [5] 
are used to measure recurrence of states in the phase-space 
between two chaotic signals. However, these plots are 
difficult to analyze due to the lack of quantitative measures, 
in addition to their computational complexity. 
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Earlier [6], we proposed the self-organizing-map-based 
similarity index (SOM-SI) measure, as a computationally 
simplified alternative of the SI technique, originally 
proposed in [7]. This technique characterizes the asymmetric 
synchronizations among multiple signals. Conceptually, SI 
is based on the assumption that if there is a functional 
dependency between two signals, then the recurrence of 
dynamics of one signal will mean the recurrence of 
dynamics in the other signal. Arnhold et al. [7] propose to 
search for recurrence in the signals’ state-space, which poses 
an enormous computational burden, especially for large data 
sets. The SOM-SI measure reduces the computational 
complexity, while maintaining accuracy [6]. The central 
idea of the SOM-SI is to reduce complexity by quantizing 
the signals’ state space using a topology-preserving map. 

In this paper, we study the synchronization patterns in 
epileptic ECOG data, using the SOM-SI. First, we present a 
brief overview of SOM-SI. Next, the equivalence of the 
results obtained by SI and SOM-SI is shown by statistical 
tests. Section IV discusses epileptic ECOG synchronization 
as quantified by the SOM-SI. In Section V, we provide a 
brief discussion on possible future directions for research. 
 
 

II. METHODOLOGY 
 

Synchronization between two signals X and Y is 
understood, in principle, as a functional mapping between X 
and Y. In the brain, it is realistic to expect the functional 
mappings to be nonlinear. The attractors of functionally 
synchronous systems will be related. In other words, if the 
trajectory of Y is influenced by the trajectory of X, then Y is 
said to be functionally dependent on X. However, in 
instances where bi-directional relationships exist, the 
trajectory of Y can also partly influence the trajectory of X. 
In such a case, it is important to quantify two aspects of 
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synchronization: direction and strength. 
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Figure 1. The phase-space trajectory of the training ECOG signal 
(solid lines) superimposed on the weights (dots) of the trained 
25x25 ECOG-SOM grid. 
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Figure 2. A qualitative illustration of the accuracy of the 25x25 
ECOG-SOM. Sample test signal (solid line) overlapped on the 
SOM-reconstructed output (dash and dot line). In this case, the 
correlation coefficient = 90.1%.  

 
A. Original SI measure 

Assume that X and Y are two time series generated by a 
system, which are embedded into two vector signals in time 
using delays. N(X|Y) is defined as the average dependency 
of  X on Y and it can be written as, 
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where Rn(X) is the average Euclidean distance between the 
state-vector of Xn and the remaining state-vectors in X. Y-
conditioned Euclidean distance Rn(X|Y) measures the 
average Euclidean distance between Xn  and the vectors in X 
whose corresponding time-partners are the k-nearest 
neighbors of Yn.  This measure takes values in [0,1], where 0 
implies no coupling and 1 implies perfect synchronization 
[10,11]. 

By design, SI can quantify nonlinear dependencies. The 
difficulty with this approach is that at every time instant, we 
must search for the k nearest neighbors of the current 
embedded vector sample among all samples. Thus, the 
computational complexity is O(N2), N being the total 
number of samples. This high complexity hinders real-time 
implementation and analysis. 
 
B. SOM-based SI algorithm 

A SOM [8] is a neural-network in which spatial patterns 
from the input-space are mapped onto an ordered output 
space consisting of a set of neurons, called processing 
elements (PE). Thus each neuron in the SOM, based on its 
location on the map, compactly models different 
features/dynamics of the input. In the application of SOM 
modeling to the similarity index concept, the topology 
preservation feature of the SOM will be of added advantage, 
because of the fact that the neighboring neurons in the 
feature space will now correspond to neighboring states in 
the input data. 

Define the activation region of a neuron in the SOM as 
the set of all input vectors (the embedded signal vectors) for 
which the neuron is the winner based on some distance 
metric (Euclidean in most cases). 

Let Xn be the set of time indices of input vectors xj that 
are in the activation region of the winner neuron 
corresponding to the input vector xn at time n. Similarly 
define the set Yn. Then the procedure to estimate the directed 
SOM-SI between X and Y is as follows: 
 
1. Train a SOM using embedded vectors from both X and 

Y as the input. 
2. At time n, find , the winner neuron for vector xn, 

and find , the winner neuron for vector yn. 

x
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3. To find Rn(X), compute the average Euclidean distance 
between  and all the other winner neurons in the 
SOM. Similarly, compute Rn(Y). 
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4. Determine the sets Xn and Yn for and , 
respectively. 
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6. Calculate , where 

q is the number of elements in Xn. 
Calculate , where 

q is the number of elements of Yn. 
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7. Compute  the ratios, 
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8. Find interdependencies  and  as the 

average of  and  over all  n. 
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9. Compute the SOM-SI as  the difference, 
 )|()|( YXNXYN −=χ . 
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Figure 3. SOM-SI results showing the dependencies N(X|Y), 
N(Y|X). X and Y correspond to channels RTD4 and RST1, 
respectively.  The time instant ‘0’ corresponds to the seizure onset 
(top). Results produced by  the original SI (bottom). 
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 Positive values of χ indicate that influence of X on Y is 
more than the influence of Y on X, while negative values 
indicate the opposite. Higher magnitude of χ indicates a 
stronger coupling of the signals. 
 The nearest neighbor search involves O(NM) operations 
as opposed to O(N2)  in the original SI, where M is the 
number of PEs. Traditionally M<<N, hence, SOM-SI offers 
a significant reduction in computations compared SI. 
 
 

III. RESULTS 
 

We demonstrate the utility of SOM-SI in epileptic 
ECOG analysis and compare results statistically with the 
original SI. An 25x25 ECOG-SOM is trained using 3000 
input vectors constructed by embedding (dimension=10, 
delay=30ms) ECOG signals collected from various regions 
such as temporal, sub-temporal, and orbit frontal, of an 
epilepsy patient. The ECOG-SOM needs to represent all 
possible ECOG-dynamics, so the training data must include 
samples from the inter-ictal, ictal, and the pre-ictal states of 
the patient. Fig. 1 shows the phase-space trajectory of the 
data and the PEs of the ECOG-SOM in two-dimensions. 
The normal ECOG state is represented by the smaller 
amplitude activity (the dominant portion of the training 
data), whereas the larger amplitudes correspond to the spiky, 
sharp and slow wave activity, mostly formed during the ictal 
state. We note that the distribution of the neurons is sparse 
in the higher amplitude region because of the density 
matching property of the SOM. 

To ensure generalization of the SOM, a test set of 
ECOG signals were quantized by the trained SOM. As seen 
from Fig. 2, the quantization results successfully 
approximate the dynamics of the test data set (projected in 
one-dimension). The correlation coefficient between the two 
signals was found to be 90.1%. For the most part, the 
correlation coefficient was between 80% and 95%. Note that 
the amplitude errors are higher in the larger amplitude 
regions corresponding to spike and slow waves. This is 
expected because of the sparse distribution of the neurons in 
the higher amplitude regions. These errors can be 
compensated by using a larger SOM grid (> 25x25), but 
since the dynamics of the data are more important for the 
neighborhood information in the SI measure and 
computational complexity will be an issue, we chose not to 
increase the SOM grid size. 

Next, we quantify the accuracy of the SOM-SI measure 
relative to the original SI measure by comparing their 
results. SI values were calculated on nearly 39 minutes of 
data corresponding to a pair of signals obtained from the 
right temporal (RTD4) and the right sub temporal depth 
(RST1) electrodes. The entire interval of 39 minutes data 
was segmented into 230 non-overlapping windows of 10 
seconds each. Fig. 3 shows the interdependency and the SI 
values of both the measures. It is easy to see that the results 

from both the measures are in agreement to a large extent. 
There are also subtle differences, which need to be 
quantified using statistical tests. 

The comparison will be two-fold: (i) identify if the 
number of windows in which the predicted directions of 
influence differ is significant or not, (ii) given time instances 
where both measures agree on the direction, check if 
significant differences exist in predicted strengths of 
influence. Assuming that SOM-SI and SI measure values 
come from normal populations, we use the two-sided paired 
t-test to investigate the extent of disagreement between the 
two methods. The test was performed at a significance level 
of α=0.05, over a size of 138 randomly selected samples out 
of the 230 available samples. 
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Figure 4. Maximum average driving ability of each of the six (6) 
channels, nearly 100 minutes before and 70 minutes after Seizure-1 
in patient P092. (The thin vertical bar corresponds to the time 
when seizure occurred (0 to 2 on the x-axis). For clarity, the box 
inside the figure shows a small portion of the maximum average 
driving ability of each of the 6 channels, baseline-offset by different 
scales.) Drop in synchronization followed by an abrupt increase in 
phase synchronization at the onset of seizure is evident. 
Synchronization across channels during seizure is also clearly seen. 
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Null hypothesis: H0: 0)( == −− SISIsomd χχµµ  

Alternate hypothesis: H1: 0)( ≠= −− SISIsomd χχµµ  
Paired t-test is chosen, because the observation in window 1 
of original SI is obtained under similar conditions as the 
window 1 of SOM-based SI, and hence, the data may be 
said to occur in pairs. In this case, texp was found as -0.9441, 
whereas tcrit=t(0.05),137=1.960. Since texp<tcrit, we do not have 
enough evidence to reject the null hypothesis, H0. This was 
also the case in most other comparisons made using 
different electrode pairs from different patients. Therefore, 
we conclude that statistically the SOM-SI measure, 
computed with a 25x25 grid SOM, performs as well as  the 
original SI measure.  

To analyze spatio-temporal synchronization in an 
epileptic brain, six representative channels representing 
different regions on the brain were selected. Pair-wise 
interdependence was computed among all the 15 possible 
combinations of the six channels on 2 patients involving 5 
seizures (Partial secondary generalized (PSG) and Complex 
partial (CP) seizures) between them. The interdependence 
values tend to change very sharply between windows, so a 
smoothing is done by applying a rectangular-window 
moving average (length 10). Also, it can be observed from 
Fig. 3, the interdependence values characterizing the driving 
and sinking ability of the channels do not exhibit a major 
difference in patterns. Therefore driving and sinking 
abilities of the brain areas can only be addressed through 
statistical tests on the SI results.   

On the smoothened interdependence signals, for each 
window and for each channel we find the maximum driving 
influence that the channel exerts on any other channel. Over 
windows (time) these maximum driving indices give the 
maximum driving ability of the particular channel of 
interest. The maximum driving abilities are evaluated for 
every channel under consideration and are shown in Fig. 4. 
In the inter-ictal stage, low driving ability of all the channels 
indicate that the channels are de-synchronized, even though 
they exhibit an upward trend. Synchronization goes up 
momentarily a few minutes pre-seizure and at the onset of 
the seizure, there is a sudden drop followed by a sharp 
increase post-seizure. Higher degree of post-seizure global 
synchronization is followed by a gradual drop, leading to the 
inter-ictal state. This trend in synchronization patterns was 
observed in all five seizures from both patients. 

Interestingly, the thin lines at the seizure onset also 
indicate a spatial synchrony. Clinically, this behavior may 
indicate that the oscillators at different cortical columns in 
the brain interact equally with each other even though the 
degree of interaction is very low. As seizure subsides, it 
possibly resets the brain. If indeed ECOG signals are 
chaotic, as pointed out by Iasemidis et al. [9],  and if we 
assume that ECOGs at different spatial locations are the 
same signals starting at different initial conditions, then it is 
possible that they will display higher degree of interaction in 

the transient states (post-seizure) as opposed to the steady 
state conditions (inter-ictal state).  

 
 

IV. CONCLUSIONS 
 

In this paper, the SOM-SI measure is used to detect 
functional dependencies among multivariate structures. The 
measure is simplified and faster as compared to the original 
SI [7] measure.  Using this measure on epileptic ECOG 
data, we found changes in synchronization patterns both, 
across time and space. In other words, the interdependency 
values revealed information on how spatial connectivity’s 
change in the brain, prior to, during and after seizure.  
Statistical tests on SOM-SI values may reveal further insight 
on the exact driver/sink relationships among channels. 
Identifying the optimal subset of channels for prediction 
studies may be another important step towards real time 
analyses. As a possible future effort, we intend to do 
dependency analyses on extensive data, involving larger set 
of patients, electrodes and seizures. Also, quantifying 
characteristic changes in spatio-temporal patterns among 
different types of seizures may further aid in reliably 
predicting the exact type of seizure.  
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