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Abstract. Blind Source Separation consists of estimating n sources
from the measurements provided by m sensors. In this paper we deal
with the underdetermined case, m < n, where the solution can be
implemented in two stages: first estimate the mixing matrix from the
measurements and then estimate the best solution to the underdeter-
mined linear problem. Instead of being restricted to the conventional
two-measurements scenario, in this paper we propose a technique that
is able to deal with this underdetermined linear problem at an arbi-
trary number of dimensions. The key points of our procedure are: to
parametrize the mixing matrix in spherical coordinates, to estimate the
projections of the maxima of the multidimensional PDF that describes
the mixing angles through the marginals, and to reconstruct the maxima
in the multidimensional space from the projections. The results presented
compare the proposed approach with estimation using multidimensional
ESPRIT.

1 Introduction

The blind source separation (BSS) problem consists of estimating n sources from
the measurements provided by m sensors. In the noise-free linear model, the
measurements are related to the sources through an unknown linear combination

As = x, (1)

where s ∈ Rn is the source random vector, x ∈ Rm is the measurement random
vector, and A ∈ Rm×n is the unknown mixing matrix. Depending on the relation
between m and n, we are faced with three different scenarios. The square (m = n)
and the strictly overdetermined (m > n) cases have been extensively studied in
the literature [1, 2], and all we need to separate the sources is to estimate the
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mixing matrix A, since the inverse solves the square problem, and the pseudo-
inverse provides the solution with minimum-norm error in the overdetermined
case [3].

The last scenario, in which we are interested in this paper, arises when the
number of sensors is smaller than the number of sources (m < n). In this under-
determined case, the solution process can be divided in two stages: first estimate
the mixing matrix from the measurements and then estimate the sources that
“best” solve the underdetermined linear problem [4, 5]. This procedure relies on
the premise that the sources are sparse or that a suitable linear transformation
is applied to convert the non-sparse sources into a sparse representation [6]. To
parametrically model sources with different degrees of sparsity, the following
model for the source densities is used

pSj (sj) = pj δ(sj) + (1 − pj)fSj (sj), j = 1, . . . , n, (2)

where sj is the j-th source, pj is the sparsity factor for sj , and fSj (sj) is the PDF
when the source j—that is assumed to be zero-mean—is active. The performance
of this two-stage procedure strongly depends on the sparsity of the sources, both
for the estimation of the mixing matrix and for [7] the estimation of the sources
[8]: the higher the sparsity factor the better the estimation of mixing matrix and
the recovery of the sources.

Most of the results on underdetermined BSS [6, 8] consider the case with two
sensors (m = 2), in which the mixing matrix can be obtained, from a geometrical
point of view [9], by finding the maxima of a unidimensional probability density
function (PDF). However, the direct extension of this method to scenarios with
more than two sensors requires finding the maxima of a multidimensional PDF
[10], that, in addition to be computationally more complex, requires a number
of samples that depends exponentially on the number of dimensions.

In this paper, we extend our previous work on underdetermined BSS [4] to
deal with an arbitrary number of sensors (more than one) and an arbitrary
number of sources. The organization of the paper is as follows: In Section 2, we
present the problem of estimating the mixing matrix as the problem of finding the
maxima of an (m−1)-dimensional PDF. In Section 3, we introduce the projection
procedure that reduces the peak estimation problem from a multidimensional
PDF to m − 1 decoupled unidimensional PDFs, and show how to elucidate the
spurious combinations of peaks from those that are true maxima of the (m− 1)-
dimensional PDF. In Section 4, we validate the proposed method with a series
of Montecarlo simulations. In Section 5 we present the conclusions of this work.

2 Estimation of the Mixing Matrix

Equation (1) can be interpreted from a geometrical point of view as the projec-
tion of the source vectors s from Rn into the vector space Rm of the measure-
ment vectors x. If we denote by aj the j-th column of the mixing matrix, so that
A = [a1,a2, · · · ,an], (1) can be rewritten as
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Fig. 1. Scatter plot of measurements for a
scenario with three sensors (m = 3) and
four sources (n = 4) of sparsity factor:
0.5.
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Fig. 2. Histogram of angles for the mea-
surements of Figure 1. The (m − 1)-
unidimensional projections onto the plane
of angle θi, i = 1, . . . , m − 1 are also
shown.

x =
n∑

j=1

sjaj , (3)

that explicitly shows that the measurement vector is a linear combination of the
columns of the mixing matrix. According to this interpretation, if at a given time
only the j-th source is non-zero, the measurement vector will be collinear with
aj . When more than one source is active at the same time, the measurement
will be a linear combination of the corresponding columns of the mixing matrix.
In Figure 1 we show a scatter plot for a scenario with four sources and three
sensors that is simulated for sources with sparsity factors of 0.5. For higher
sparsity factors, the measurements are more concentrated along the directions
of the columns of the mixing matrix [4].

The first step in our recovery procedure is to convert all the points of the
m-dimensional vector space of the measurements and the columns of the mixing
matrix from a Cartesian representation to a spherical coordinate system, where
every point x of Cartesian coordinates (x1, . . . , xm) is represented by its mod-
ulus r and by m − 1 angles θi. According to this definition, the angles can be
determined from the rectangular coordinates as

θi = arctan
xi+1√∑i

l=1 x2
l

, i = 1, . . . , m − 1. (4)

If we apply (4) to the measurements of Figure 1, and represent an histogram
taking as independent variables the m − 1 angles, we obtain the results shown
in Figure 2.
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3 Dimension Reduction by Projection

Up to this point, we have reduced the problem of estimating the mixing matrix
A to the problem of estimating the n peaks of an (m − 1)-dimensional PDF,
since those peaks define the spherical angles that parametrize the n columns of
the mixing matrix. It is well known that the problem of estimating the peaks of a
multidimensional PDF requires much more data samples as the dimensionality of
the problem grows [11]. However, the idiosyncrasy of the underdetermined BSS
problem will help us to circumvent this problem. The sparsity of the sources,
which is a prerequisite for the proposed underdetermined BSS procedures to
work, will be determinant to the ability of estimating a multidimensional PDF
by means of unidimensional estimations. In Figure 2 it can be observed that
the (m − 1)-dimensional PDF is composed of a set of n peaks that, even for an
sparsity factor of 0.5, are quite narrow. In Figure 3, a top view of the (m − 1)-
dimensional PDF is shown. The black spots correspond to the locations of the
maxima from Figure 2.

Since we are interested in determining only the position of the peaks, and
not the complete shape of the PDF, all the information we are looking for can
be extracted from the m − 1 projections onto the unidimensional vector spaces
corresponding to conserving only one spherical coordinate and making zero all
the other angles. These projections are shown in Figure 2 for the case of three
sensors and four sources, which we are using as an example. They can be con-
sidered as the set of m − 1 unidimensional PDFs of the m − 1 spherical angles
that are shown as projections in Figure 2.

To each of these m − 1 unidimensional PDFs of the angles that parametrize
the measurements, a method has to be applied to find up to n maxima, whose
locations correspond to the estimates θ̂ij , i = 1, . . . , m − 1, j = 1, . . . , n. A
number of methods could be applied, from the simpler one of calculating the
histogram and finding the maxima, to the use of nonparametric estimation by
means of Parzen windowing [7], or to the use of spectral estimation techniques
suitable for the estimation of sinusoids in noise [12].

Once the estimations of the individual spherical angles are obtained, it is
necesary to reconstruct the position of the maxima of the multidimensional PDF
from the unidimensional projections. The problem arises from the loss of infor-
mation inherent to the projection process, and can be visualized by reconsidering
Figure 3. We are interested on the (m − 1)-dimensional position of the maxima
indicated by the black spots, but all we have access to from the unidimensional
estimations is the projections of these spots onto each of the coordinate axes.
From these projections, all the combinations of angles could be constructed, as
it is shown with dotted lines in Figure 3, and a method has to be implemented
that allows to distinguish the correct combinations from the spurious solutions.

Fortunately, there exist an easy way for the correct combinations to stand
out: all that we need to do is to define a small area around each combination
of angles, that constitutes a tentative solution, and count how many measure-
ments fall into that area. The correct combinations will have a high number of
occurrences, but a point falling into the region associated to a spurious combi-
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nation will be an improbable event. Since the number of combinations of angles
is nm−1, the procedure to elucidate which are the correct combinations of angles
is to construct an (m − 1)-dimensional count array C of length n in each of the
dimensions and find the maxima for each intersection of the m−1 dimensions. In
our example of four sources and three sensors, the (m−1)-dimensional array is a
4×4 matrix. In equation (5) the calculated matrix for a simulation with sparsity
factor 0.5 is shown. The matrix is shown upside-down to facilitate comparison
with Figure 3. The higher the sparsity factor, the more concentrated the mea-
surements along the columns of the mixing matrix. As an example, for a sparsity
factor of 0.9, almost all the measurements fall into the regions associated with
the correct combinations.

C(0.5) =





669 0 1 2
2 3 705 1
0 1 3 632
1 674 3 0



 . (5)

Since the method of estimating the peaks on the multidimensional space
is based on the information obtained by projecting, a potential problem could
appear when more than one peak is projected along any direction into the same
point. In this situation, we would not detect the limit of up to n peaks in each
coordinate, but a smaller number of peaks in some angles. However, this is not
really a problem, because with the help of the count vector C we would detect
the situation (there would be high count numbers for multiple combinations of
the same angle, instead of a single maximum per row and column of C) and we
could estimate the position of all the peaks.

4 Numerical Results

To characterize the performance of our method, Montecarlo simulations have
been performed to estimate the mixing matrix from scenarios with different
numbers of sources and sensors. In all the cases, the source realizations have
been generated according to the model in (2), using as fSj(sj), j = 1, . . . , m,
Gaussian densities with zero mean and unit variance. The simulations have been
performed as follows: for each scenario, twenty thousand samples of sources with
sparsity factors from 0.05 to 0.95 have been produced. For each scenario and
sparsity factor, four hundred mixing matrices have been randomly generated, the
spherical angles have been estimated from the unidimensional projected PDFs,
and the criterion to select the correct combination of angles has been applied.
The different scenarios considered are those associated with a number of sensors
ranging from two to five, and a number of sources ranging from one to ten.
As the figure of merit we have selected the number of errors in the estimation
of the angles (defining a tolerance on the basis of the bin length used on the
histograms). We define the mean error rate as the mean number of errors for all
the mixing matrices divided by the total number of angles to estimate.

Figure 4 shows the results from scenarios with five sensors (m = 5) and a
number of sources from six to twelve (6 ≤ n ≤ 12) for all the sparsity factors
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Fig. 3. Top view of the (m − 1)-dimen-
sional PDF corresponding to the spheri-
cal angles of the measurements. The black
spots correspond to the locations of the
maxima from Figure 2.
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Fig. 4. Mean error rate for scenarios with
a fixed number of five sensors and a num-
ber of sources ranging from six to twelve,
as a function of the sparsity factor of the
sources.

considered. It can be observed that the number of errors grows with the number
of sources (more peaks have to be estimated from the same data, and the mean
distance between peaks decreases), and diminish with the sparsity factor (the
measurements tend to be more concentrated along the columns of the mixing
matrix, reducing the spreading that confuses the estimation).

Figure 5 shows the results from scenarios with seven sources (n = 7) and
a number of sensors ranging from two to six (2 ≤ m ≤ 6) for all the sparsity
factors considered. It can be observed that the number of errors diminish as the
number of available measurements increases.

Figure 6 shows the mean squared error (MSE) for the estimation of the
angles of the mixing matrix for an scenario with four sources and two sensors
obtained with the proposed reconstruction by projection method. In the same
figure, the results obtained by applying two-dimensional ESPRIT to the direct
estimation of the angles from the bidimensional PDF of Figure 2 are also shown.
It is remarkable that the estimation from the projections, that is much easier
and faster than the bidimensional ESPRIT, provides even better results.

5 Conclusions

In this paper we have presented a procedure to estimate the mixing matrix for
underdetermined BSS problems in an arbitrary number of dimensions. The ap-
proach is based on parametrizing both the measurements and the columns of
the mixing matrix in spherical coordinates and on estimating the peaks of the
multidimensional PDF associated with the angles of the measurements. Since
the estimation of multidimensional PDFs is a complex problem, we propose to
project onto as many unidimensional PDFs as the number of spherical angles
(the number of sensors minus one). Once the individual angles are estimated
from the projections, the location of the peaks on the original multidimensional
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Fig. 5. Mean error rate for scenarios with
a fixed number of seven sources and a
number of sensors ranging from two to six,
as a function of the sparsity factor of the
sources.
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Fig. 6. MSE of the estimated angles θ̂ij ,
j = 1, . . . , 4 as a function of the spar-
sity factor (p) of the sources using both
Esprit-2D (solid-line) and m − 1 projec-
tions (dashed-line) for an scenario with
two sensors and four sources.

measurement space can be reconstructed. Since there exist different multidi-
mensional PDFs compatible with the given projections, we propose a method to
distinguish the spurious combinations of angles and to elucidate the correct com-
binations. We would like to point out that the procedure presented in this paper
is not exclusive for underdetermined cases, since nothing prevents us from using
this method in scenarios with less or equal sources than sensors. The reason why
we focus on the underdetermined case is twofold: on the one hand, there exist
other excellent approaches for the overdetermined and squared scenarios; on the
other hand, the performance of our method increases with the sparsity factor of
the sources, that is a prerequisite only for the underdetermined scenario. The
Montecarlo simulations have shown that our method provides excellent results
for an arbitrary number of sources and sensors provided that the sparsity factor
is high enough (around 0.75). The intuitive result that the performance improves
with the number of measurements and the sparsity factor, and degrades with
the number of sources has also been corroborated.
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