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Abstract – Representation of a large set of high-
dimensional data is a fundamental problem in many 
applications such as communications and biomedical 
systems. The problem has been tackled by encoding the 
data with a compact set of code-vectors called processing 
elements. In this study, we propose a vector quantization 
technique that encodes the information in the data using 
concepts derived from information theoretic learning. 
The algorithm minimizes a cost function based on the 
Kullback-Liebler divergence to match the distribution of 
the processing elements with the distribution of the data. 
The performance of this algorithm is demonstrated on 
synthetic data as well as on an edge-image of a face. 
Comparisons are provided with some of the existing 
algorithms such as LBG and SOM. 
 
 

I. INTRODUCTION 
 Encoding an information source with a smaller set of code 
vectors is a fundamental problem in digital signal processing. 
There exists a huge literature on vector quantization (VQ) 
algorithms that use various cost functions to minimize the 
average distortion between the dataset and the information 
contained in the codebook. The K-means [1] and the LBG 
[2], count amongst the oldest of all VQ algorithms. The LBG 
mainly adopts a binary split approach that consists of splitting 
the centroids at each iteration, while partitioning the input 
space based on the centroids. The processing elements (PEs) 
are then updated such that they are placed at the centroids of 
all the partitions in the input space. Kohonen’s SOM [3] is a 
stochastically and competitively trained vector quantizer. An 
important benefit of the SOM method is preservation of the 
topology of the input. This means, neighboring PEs in the 
weight space, correspond to neighboring points in the input 
(data) space. In summary, the SOM tries to approximate the 
distribution of the input data, while preserving structure. 
 One of the problems with the existing VQ algorithms is 
that they do not explicitly minimize a cost function; they are 
rather heuristic. Erwin [4] showed that when the SOM has 
converged, it is at the minimum of some discontinuous cost 
function. These discontinuities make the cost prone to drastic 
changes in some instances, which is undesirable. Heskes et 
al. [5] have made attempts to find a smooth cost function 
that, when minimized, gives the SOM update rule. 
 Efforts have also been made to design VQ algorithms 
using information theoretic perspectives. Heskes [5] used a 

cost function consisting of the quantization error and the 
entropy of the PEs. He also explored the links between SOM 
[3], elastic nets [6], and mixture modeling concluding that 
these methods are closely linked via the free energy point-of-
view. Van Hulle [7] used a learning rule that consists of 
adapting the mean and variance of a Gaussian kernel, to 
maximize the entropy of the PEs. In order to prevent this 
algorithm from converging to a trivial solution where the PEs 
coincide, he modifies the algorithm quite heuristically to 
maximize entropy while minimizing mutual information by 
introducing competition between the kernels. 
 Earlier the authors approached the VQ problem from a 
density-matching point of view, where the statistical 
distributions of the data and the distribution of the PEs were 
matched through the maximization of the correlation, 
resulting in a cost function based on the Cauchy-Schwartz 
(CS) inequality [9]. In this paper, the VQ network weights are 
optimized to minimize the Kullback-Leibler (KL) divergence 
between the distribution of the data and the PEs. The 
equivalence between the minimization of KL divergence and 
the maximum likelihood principle is well known. Thus, the 
resulting optimal VQ solution can be considered equivalently 
as the maximum likelihood solution under the assumed 
distribution model. This algorithm based on KL divergence 
performs as well or better than the CS inequality algorithm, 
with reduced computational complexity. 
 Section II describes the proposed VQKL algorithm in 
detail. Section III presents simulation results using an 
artificial data set and a data set obtained by edge-detection of 
a face image. Comparisons with LBG and SOM are provided. 
The final section concludes the paper with remarks on 
possible future directions to improve the algorithm. 
 

II. ALGORITHM 
 Consider the vector samples  from an 
information source in a d-dimensional signal space. Suppose 
that these samples are drawn from the distribution g(x). 
Since, in practice the data distribution is generally unknown, 
it can be estimated using a Parzen-window estimator; this 
estimate of the data probability density function (pdf) is: 
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samples drawn from the distribution g(x). One of the 
requirements for the kernel function is that it should be 
symmetric, unimodal, and continuously differentiable. A 
Gaussian kernel meets all these requirements: 
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 Similarly, let the true distribution of the PEs be f(x). 
Suppose that the individual VQ weight vectors are 
independent samples drawn from this distribution, 
{ . In VQ it is desirable to have M<<N. Using 
Parzen windowing with Gaussian kernels as before, the 
estimated density of the PEs is: 
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The objective is to efficiently encode the data samples using a 
much smaller set of quantized weights without compromising 
the accuracy of the data representation. In other words, we 
wish to find a compact set of processing elements that can 
best represent the source data in terms of its distribution. This 
can be achieved by optimizing the weight vectors wi such that 
the estimated density of the weights maximally match the 
estimated density of the data in accordance with some 
divergence criterion. Specifically, the Kullback-Leibler (KL) 
divergence [8], between two distributions a(x) and b(x), is 
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All integrals are evaluated from -∞ to ∞. The KL divergence 
is not symmetric, i.e., . Both quantities 
are nonnegative and become zero if and only if a(x)=b(x). 
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A. Vector Quantization Using Kullback-Leibler Divergence 
 The VQKL algorithm uses the KL divergence measure 
as the optimality criterion. Due to the Parzen estimates of the 
densities using continuous and differentiable kernels, the 
performance surface is smooth, allowing us to use gradient-
based or other iterative descent algorithms. In particular, the 
following cost function is minimized: 
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where W=[w1,…,wM]. The strategy of this cost function can 
be intuitively understood as follows: the first term is the 
negative of the Shannon entropy of the weights, therefore 
minimizing this cost is equivalent to maximizing the entropy 
of the weights (similar to [7]); at the same time, minimizing 

the second term in (5) can be considered as maximizing the 
correlation between the weight distribution f(x) and log of the 
data distribution log(g(x)). The logarithm emphasizes the 
contributions from the low-probability regions of the data. 
This emphasis of sparse regions ensures that some weights 
are reserved for representing these areas in the data space. 
This cross term ensures that the weight distribution matches 
the data distribution closely. 
 The weight vectors are optimized by minimizing (5) 
using gradient descent: 
 kkk Jnn wWww ∂∂−←+ )()()1( η  (6) 
The necessary gradient expressions with respect to each 
weight vector are found to be: 

 

);,...,,(

)();(1

);,...,,(
)();(2)(

1

1
1 1

1

x

xx

w

ww

Λxxw

xwΛΛxw

Λwww
wwΛΛww

w
W

Nk

jkjk

M

i Mi

kiki

k

G

M

G
M

J

ρ

ρ

−−
−

−−−
=

∂
−

=

−

∑
 (7) 

where 

  (8) ∑ =
−=

N
j jN G

11 );();,...,,( ΛxwΛxxwρ

The alternative definition of KL divergence is not used 
because it reduces to only matching of the weight distribution 
to that of the data. This is easily seen by observing the 
explicit expression. The alternative divergence is: 
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The first term does not depend on the weights, therefore it 
can be dropped from the cost function. Since the entropy 
maximization term is lacking, it has been observed that the 
convergence is typically much slower, although the 
computational load per iteration is lower in this alternative. 
Therefore, we adopt the approach given in (5) in the rest of 
the paper. 
 
B. Discussion of Implementation Issues in VQKL 
As in all gradient-based optimization techniques, this 
algorithm might suffer from local minima. It has been shown 
in previous papers that in learning algorithms designed using 
the Parzen windowing technique one way to avoid local 
minima is to anneal the kernel size [10]. A large kernel size 
will stretch and smoothen the performance surface 
eliminating some spurious local minima and enabling the PEs 
to move towards the biased global optimum of the new 
surface. As training progresses, the kernel size is annealed to 
yield a narrower kernel and a weaker smoothening effect, 
thus decreasing the bias in the global optimum allowing the 
weights to converge to the global optimum. Therefore, in the 
VQKL algorithm, we propose to start with a large kernel size 
to enable interactions between all PE-PE and PE-data pairs. 
By progressively annealing the kernel size with iterations, the 
interactions are limited to only nearby points. This 



progressive annealing strategy bears strong resemblance to 
the cooperative/competitive learning technique employed by 
the SOM. 
 Since VQKL uses batch updates, the kernel sizes are set 
up as follows: 

a) Estimate the sample covariance matrix Σx of the data 
{x1,…,xN}. 

b) Set Λw(0)=Λx(0)=αdiag(Σx), where α>0 is a constant 
determined empirically (typically in the order of 10 to 
100), and diag(Σx) is a diagonal matrix consisting of the 
variances of the data along each dimension. 

c) Anneal both kernel sizes with every iteration (where n is 
the iteration index) using some annealing factor λ 
according to 

 )1/()()()( ndiagnn λα +== xxw ΣΛΛ  (10) 

 The kernel size is never allowed to decrease below a 
selected threshold βdiag(Σx), where 0≥β  is a small constant 
on the order of 10-3 to 10-1. 
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Fig. 1. Simulated data consisting of two half circles (dots).  16 PEs 
after convergence are shown in small circles. 
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Fig. 2. Average MSQE versus iterations for VQKL in the first data 
set. 
 

 VQKL SOM LBG 
MSQE 0.024 0.024 0.023 

J 2.437 3.378 2.460 
 
Table 1. Comparison of MSQE for the three algorithms in the first 
data set. The standard deviations of VQKL and SOM are 
negligible over the Monte Carlo runs and for LBG it is zero. 

 The VQKL algorithm requires O(M2+MN) Gaussian 
evaluations for updating the weights at every iteration. The 
performance of the algorithm particularly depends on how 
accurately the densities are estimated using the Parzen 
window estimator. The kernel size matrices Λw and Λx 
constitute the free parameters of the density estimation 
process. Additionally, a gradient descent step size η must be 
selected. The step size must be sufficiently slow compared to 
the annealing rate. The step size can also be annealed to 
ensure smoother convergence. 
 

III. RESULTS 
In this section, the quantization performance of the VQKL 
algorithm is demonstrated on two data sets. The first data set 
(also used in [9]) is an artificially generated two-cluster data 
in 2-dimensions. The second data set is an edge-detected face 
image, where the positions of the edge pixels in the image 
constitute the data points (also 2-dimensional). The second 
example is especially preferred as the edges of each organ in 
the face constitute a natural clustering solution. Comparisons 
with LBG and SOM are presented on these two data sets 
using standard performance metrics. 
 The first data set, shown in Fig. 1, essentially consists of 
samples drawn from two half circles with unit radius 
distorted with a Gaussian noise with standard deviation 0.1. 
Optimizing 16 randomly initialized PEs according to the KL 
divergence measure discussed above, the quantization 
solution shown in Fig. 1 is obtained consistently for all of the 
20 Monte Carlo initializations. The average convergence 
curve of the algorithm over these Monte Carlo runs, 
quantified by the average mean-square-quantization-error 
(MSQE), is presented in Fig. 2. In this example, we set 
α=1.5, β=0, λ=0.08, the variances of the data in each 
direction were calculated as 0.75 and 0.51. The MSQE is 
calculated by: 
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where w*i is the nearest weight to sample xi after convergence 
is achieved. This is a widely accepted measure in the VQ 
literature and has become a standard error metric for 
performance evaluation. The MSQE of VQKL, LBG, and 
SOM are provided in Table 1 for the first data set. Since LBG 
explicitly tries to minimize this criterion, it performs the best 
among the three methods. Alternatively, distortion can also 
be quantified by the KL divergence, J(W), between the 
source and the PE distribution (5).  Even though J(W) is 
explicitly used as the cost function in VQKL,  it appears to be 
a stronger measure since it directly quantifies the extent to 
which the distribution of PEs differ from the distribution of 
the data. Evidently, higher order moments are considered in 
J(W) as opposed to MSQE, which  merely considers second  
 



order statistics. In this comparison, the VQKL outperforms 
both the SOM and the LBG by yielding the smallest KL 
divergence (also shown in Table 1). 
 The second example is the quantization of the edges of a 
face image. The weights are expected to specialize in 
interesting areas in the face, such as the ears, the nose, the 
eyes, and the mouth. This VQ representation of a face finds 
applications in face recognition and face modeling problems. 
A quantizer with 64 PEs is optimized on the image shown in 
Fig. 3a. Using the VQKL algorithm, the optimization results 
varied insignificantly over the 20 Monte Carlo runs 
performed with random initial conditions. The parameters 
were set to η=0.03, α=30, λ=0.12, and β=0. The data 
variances in each direction were found as 0.0171 and 0.0286. 
For the same image, the LBG quantization result is presented 
in Fig. 3b. 
 Even though the PE assignments in Fig. 3a and Fig. 3b 
look very similar, certain subtle qualitative differences are 
also evident. The left ear and the portion just above the right 
ear are described better by the VQKL compared to the LBG. 
The VQKL saves some weights from the shoulder 
representation to model the eyes with more precision, for 
example. This is expected because, intrinsically, the LBG 
tries to partition the regions and place the PEs at the centroids 
of the partitions, regardless of the distribution of the data. The 
VQKL on the other hand extracts more information from the 
data and allocates PEs to suit their structural properties. The 
bias in the LBG towards the centroids can also be seen on the 
shoulder region, in terms of the excessive number of PEs. For 
a quantitative comparison, the MSQE and J(W) for VQKL, 
LBG, and SOM are provided in Table 2. As before, the LBG 
is better in terms of MSQE, while the VQKL outperforms the 
other two algorithms in terms of KL divergence. 
 

IV. DISCUSSION 
 In this study, we present an information theoretic 
approach to the vector-quantization problem. The proposed 
VQKL algorithm optimizes the code vectors by using the 
gradient descent technique to minimize the Kullback-Liebler 
(KL) divergence between the data distribution and the 
quantization weight vector distribution. As opposed to many 
existing VQ algorithms, which are based on heuristic 
reasonings, the VQKL algorithm is based on a well defined 
optimization problem, which also provides an intuitive notion 
of how the resulting VQ models the statistical distribution of 
the data. Its computational complexity is higher than that of 
the SOM and the LBG; however, the information extracted 
from the data enables a better infrastructure for quantization. 
 Comparisons on two data sets showed that the VQKL 
algorithm outperforms the other two in terms of quantization 
error entropy, which is a direct measure of quantization 
uncertainty according to information theory. In the future, the 
face image quantization example will be extended to the 
important application of face recognition. Other possible 
applications include speech recognition using the quantized 
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(c) 

Fig 3. Illustration of the a) VQKL, b) LBG and c) SOM algorithms to
quantize an edge-detected face image. 64 PEs are shown
superimposed on the face data. 
 

 VQKL SOM LBG 

MSQE 3.37x10-4 3.52e-4 3.06e-4 

J 0.101 2.205 1.774 
 
Table 2. Comparison of MSQE and KL divergence for the three
algorithms in the face data set. The standard deviations of MSQE and
J over the Monte Carlo runs are not provided as they were negligible. 
 
features. Finally, the sensitivity of the least-squares type 



optimality criterion to outliers is well known in the statistics 
and signal processing literature. The LBG method is expected 
to be heavily biased due to the strong effects of the outliers to 
the centroids. Since the outliers are defined as extremely rare 
cases of degenerate samples, the proposed method is 
expected to provide reduced sensitivity of the optimal VQ 
solution to outliers as they will not contribute significantly to 
the density mismatch between the data and the code vectors. 
The effects of outliers on the performance will be studied in 
detail in the future. 
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