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 Abstract – Independent component analysis is often 
approached from an information theoretic perspective 
employing specific sample estimates for the mutual 
information between the separated outputs. These 
approximations involve the nonparametric estimation of 
signal entropies. The common approach involves the 
estimation of these quantities and adaptation based on 
these criteria. In contrast, in this paper, we propose a 
Gaussianization-based approach, where the separation is 
performed in two stages: Gaussianization of the mixtures 
using a homomorphic nonlinearity and separation of the 
independent components using principal component 
analysis (both stages possibly adaptive). Due to the 
rotation uncertainty in nonlinear ICA, the original 
sources cannot be recovered solely by the independence 
assumption. The proposed ICA methodology is applicable 
to instantaneous linear and nonlinear mixtures. The idea 
also generalizes easily to complex-valued nonlinear ICA. 
 

I. INTRODUCTION 
 Blind source separation (BSS) has recently become a 
mainstream research in signal processing due to the 
encouraging observation that numerous contemporary 
engineering problems involve the extraction of unknown 
source signals that are mixed by unknown physical processes. 
A wide class of array signal processing problems where 
multiple sensors are employed can be put in the BSS 
framework. Typically, BSS is used as a pre-processing stage 
in signal processing, estimation, and detection. 
 A common assumption in adaptive BSS algorithms is 
that the sources of interest are statistically independent [1-3], 
which gives rise to independent components analysis (ICA). 
Alternative assumptions that are exploited in various 
algorithms include the nonstationarity or coloredness of the 
sources [2,4,5]. The literature on BSS algorithms is vast and 
various algorithms exploit one or more of these criteria [6-9]. 
In this paper, we focus on the independence assumption for 
which the use of information theoretic optimization criteria 
becomes natural, since “mutual information is a canonical 
contrast for ICA” [9]. Due to the availability of many 
excellent sources in the literature where these basics of ICA 
and BSS can be found [1-3,10-13], we shall not dwell further 
on such introductory material and literature review. 
 More recently, research efforts have been concentrating 
more on the convolutive mixtures and nonlinear mixtures of 
sources. In this paper, we deal with nonlinear ICA, which is a 
necessary but not sufficient condition for the separation of 
nonlinearly mixed independent signals. For the latter 
problem, certain existence and uniqueness criteria have 

recently been demonstrated by Hyvarinen and Pajunen [14]. 
Several different techniques include minimum mutual 
information [15], variational Bayesian learning [16], 
symplectic transformations and nonparametric entropy 
estimates [17], higher order statistics [18], temporal 
decorrelation [19], and kernel-based methods [20]. A review 
of the current state-of-the-art in nonlinear ICA is provided 
recently by Jutten and Karhunen [21]. 
 The method proposed in this paper is a novel technique 
based on utilizing a homomorphic nonlinear function on the 
available mixtures; whether they are obtained from linear or 
nonlinear mixtures is not of consequence. In essence, the 
homomorphic transformation converts the marginal 
distributions of the mixtures to Gaussian. This makes the 
mixtures jointly Gaussian, which are then made independent 
simply using principal components analysis (PCA). 
 

II. HOMOMORPHIC ICA 
 The nonlinear ICA problem is described by a generative 
signal model that assumes the observed signals, denoted by x, 
are a nonlinear instantaneous function of some unknown 
independent source signals, denoted by s. In particular, 
 )( kk shx =  (1) 
where k is the sample index. Let the observation vector be n-
dimensional, . Then, according to the existence 
results on nonlinear ICA, it is always possible to construct a 
function , such that the outputs y=g(x) are 
mutually independent [14]. Furthermore, this separation 
function is not unique. Clearly, there exist a number of 
operations that one might employ to change the distributions 
of these outputs individually without introducing mutual 
dependence; thus an uncertainty regarding the independent 
component densities exists. Furthermore, as will be shown 
later, in accordance with the rotation uncertainty reported in 
[14], the Homomorphic ICA solution will separate the 
observation into independent components, which are possibly 
a related to the original sources by an unknown rotation 
matrix. Also, by partitioning the variables in y to disjoint sets 
and taking various nonlinear combinations of the variables in 
these partitions, it is possible to generate a random vector 

, where m<n is the number of partitions. Thus, 
z=f(y)=f(g(x)) also has independent components. Hence it is, 
in fact, possible to come up with infinitely many separating 
solutions that result in a smaller number of outputs than the 
inputs. A number of possible regularization conditions have 
been proposed before [14,16] to ensure uniqueness and the 
actual separation of the unknown sources. 
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 Due to these uncertainties, we will consider the problem 
of determining n independent components from , 
which is a necessary condition for source separation, but not 
sufficient. In particular, the essence of the proposed solution 
is to generate n independent Gaussian distributed outputs and 
this can be achieved quite easily. Consider the ideal case 
where an observation vector  is available and the 
marginal cumulative distribution functions (cdf) of each 
observed signal is known. Let x=[x

nℜ∈x

nℜ∈x

1,…,xn]T and let Fd(.) 
denote the cdf of xd. Also let φσ(.) denote the cdf of a zero-
mean Gaussian random variable with variance σ2. According 
to the fundamental theorem of probability (p. 93, [22]), zd has 
a zero-mean, unit-variance Gaussian pdf: 
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Combining these random variables into a random vector 
z=[z1,…,zn]T, we observe that the joint distribution of z is also 
zero-mean Gaussian with covariance Σz. Now consider the 
principal components of z. Let y=QTz, where Q is the 
orthonormal eigenvector of Σz, such that Σz =Q∆QT and ∆ is 
the diagonal eigenvalue matrix. Then the covariance of y is 
Σy=∆. Hence, since z is zero-mean jointly Gaussian, y is zero-
mean and jointly Gaussian with covariance ∆. It is well 
known that uncorrelated Gaussian random variables are also 
independent. Therefore, the components of y are mutually 
independent.1 The overall scheme of the proposed nonlinear 
ICA topology is illustrated in Fig. 1. 
 Certain conditions must be met by the nonlinear mixing 
function for the separated outputs and the original sources to 
have maximal mutual information. In the most restrictive 
case, for the reconstruction of independent components that 
are related to the original sources by an invertible function, 
the mixing function must be invertible, i.e. its Jacobian must 
be non-singular when evaluated at any point in its input 
space.2 The following theorem summarizes this fact. 
                                                           
1 After developing this principle for nonlinear ICA, it came to the authors’ 
attention that the importance of Gaussianization for breaking the curse of 
dimensionality was independently recognized by Chen et al. [23]. 
2 Notice that for a broad class of nonlinear mixtures, the condition that at 
most one source can have a Gaussian distribution is not necessary, as the 
nonlinear mixture will not preserve the Gaussianity. The commonly 
considered post-nonlinear mixtures are easily excluded from this group. In 
fact, to the best knowledge of authors, there is no result available in the 
literature about the general conditions that the nonlinear mixture should 
satisfy for the non-Gaussianity condition to be lifted. Clearly, when applying 
the Homomorphic ICA principle to linear source separation using ICA, the 
non-Gaussianity conditions must still hold. 

 Theorem 1. If the mixing nonlinearity is invertible and 
the marginal probability distributions of the observed vector 
are always positive except possibly at a set of points whose 
measure is zero, then, with probability one, there is a one-to-
one function between the source signals and the independent 
components when the outputs are constructed according to 
Homomorphic ICA rules. 
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Figure 1. A schematic diagram of the proposed homomorphic
independent components analysis topology. 

 Proof. By assumption h is invertible. By construction the 
PCA matrix QT is invertible and the Gaussianizing function g 
is monotonically increasing in all principal directions with 
probability one since the measure of the set on which its 
Jacobian has zero eigenvalues is zero. Similarly, due to the 
same reason, the probability of having source signals in this 
zero-measure set is zero. Therefore, with probability one, the 
Jacobian of the overall nonlinear function from s to y is 
invertible. Hence, there is a one-to-one relationship between 
these two vectors. � 
 Another possible scenario is that the mixing nonlinearity 
is only locally invertible (i.e., its Jacobian is invertible in a set 

). In this case, if S is the support of the source 
distribution, one can achieve maximum mutual information 
between the separated outputs and the original sources. 

nS ℜ⊂

 It is well known that the nonlinear ICA problem is ill-
posed and the original sources can be at most resolved up to a 
rotation uncertainty with the independence assumptions 
alone. That is, even if the mixing function is invertible, one 
can arrive at independent components that are not necessarily 
the separated versions of the original sources. This can easily 
be observed by examining the Homomorphic ICA output. 
Suppose a set of independent components are obtained from 
an observed vector x by y=QTg(x), where g(.) consists of 
individual Gaussianizing functions for each components of x 
and Q is the orthonormal eigenvector that is the solution to 
the PCA problem after Gaussianization. If the covariance of y 
is Λ, by selecting an arbitrary orthonormal matrix R, one can 
generate the output z=RΛ-1/2, which still has independent 
components (since it is jointly Gaussian with identity 
covariance matrix), however, different choices of R result in 
different independent components. In order to resolve this 
ambiguity, one needs additional information about the 
sources or the mixing process. 
 

III. A PRACTICAL HOMOMORPHIC ICA ALGORITHM 
 In practice, the marginal cdf of the observed signals are 
not known analytically, therefore, the Gaussianizing 
functions must be estimated using the available samples. An 
asymptotically unbiased and consistent nonparametric 
probability density function (pdf) estimator can be employed, 
from which the marginal cdf can be deduced. In particular, 
we will consider the Parzen density estimator in this paper. 
 Given N independent and identically distributed (iid) 
samples of a random variable x with pdf f(.), the Parzen 
window estimate for this distribution is simply [24] 
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where κσ(.) is the kernel function and σ denotes the kernel 
size (the window width). Generally, Gaussian kernels as in 
(4) are used in Parzen windowing and the standard deviation 
naturally becomes the kernel size parameter. 
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Recall that Parzen windowing is an asymptotically unbiased 
and consistent estimator if the kernel size is reduced to zero 
as the number of samples approaches infinity [25]. 
 In the case of Gaussian kernels, the estimated cdf of the 
random variable x using Parzen windowing is 
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Consequently, the estimated Gaussianizing function for x is 
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In practice, given the observed vector samples {x1,…, xN}, 
the Gaussianizing functions for each component xd must be 
estimated using the samples { . Without loss of 
generality, the observed data may first be normalized to have 
zero mean and unit variance in all of its components using 

},...,1
d
N

d xx
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where mx is the sample mean of x and Λx is the diagonal 
matrix consisting of sample variances of the components of x. 
 
A. Selecting the Kernel Size in Parzen Windowing 
 An important consideration in estimating the data pdf 
using Parzen windowing is the kernel size. A vast literature 
exists on the optimization of kernel density estimates [26]. 
Extreme approaches involve assigning an individual kernel 
size for every sample and then optimizing all these 
parameters. These procedures are computationally very 
expensive and will hinder the practicality of the proposed 
ICA algorithm. Instead, here we will focus on the single 
kernel size situation formulated in (3). The kernel size of the 
Parzen density estimate can be optimized to minimize the 
Kullback-Leibler divergence between the estimated density 
and the true underlying density using solely the samples 
available. Consider the following definition of Kullback-
Leibler divergence between the true and estimated pdf [27]: 
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where HS(x) is the true Shannon entropy of the underlying 
pdf, which is a constant in the optimization problem. 
Approximating the expectation with sample mean and using 
the Parzen density estimate of (3) in the second term of (8), 
the following optimality criterion is obtained [28]: 
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In extensive case studies using generalized Gaussian random 
variables [28] and in many linear ICA simulations [29], the 
optimal value of the kernel size was observed to lie in the 

interval [0.1,0.3] when the data standard deviation was 
normalized to unity. In addition, the results on generalized 
Gaussian variables demonstrated that the cost function in (9) 
as well as the true Kullback-Leibler divergence in (8) are 
quite flat over this wide range of kernel size values [28], 
reducing the sensitivity of the ICA solutions to this 
parameter. Nevertheless, a standard minimization algorithm 
could be applied to determine the optimal kernel size. 
 
B. Time-Varying Mixtures & Non-Stationary Sources 
 Time-variability in the mixture and the source statistics 
constitute an important class of source separation problems. 
The Homomorphic ICA algorithm can be extended to handle 
time-variations in the mixture statistics by employing the 
forgetting principle from adaptive filtering theory. The 
Parzen density estimator in (3) can be modified as [30]: 
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where  is the current pdf estimate obtained from the 
incorporation of the new sample in the previous estimate. 
Consequently, the cdf estimate in (5) will become 

)(ˆ xf k
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This recursive cdf estimator can be incorporated in (6) to 
obtain the forgetting Gaussianization function. 
C. Complex-Valued Homomorphic ICA 
 In some applications, such as fMRI analysis, the 
observed data is complex-valued. The extension of 
Homomorphic ICA to these situations is trivial. Note that an 
n-dimensional complex ICA problem becomes a 2n-
dimensional real valued one. In the Gaussianization step, the 
real and imaginary parts of the observed complex mixtures 
are regarded as individual real-valued observations. Once all 
the channels are transformed, the PCA step must consider the 
complex-valued nature of the problem. That is, the separated 
real and imaginary parts must be combined into complex 
Gaussian channels for PCA. The complex principal 
components are the Gaussian distributed solutions to the 
complex-valued nonlinear ICA problem at hand. The 
following theorem states the condition for the mixing 
nonlinearity to satisfy so that there is an invertible function 
between the separated complex outputs and the original 
sources (similar to the situation described in Theorem 1). In 
the following, consider the following nonlinear mixing 
function written in terms of real and imaginary parts: 
 )()( shshxx irir ii +=+  (12) 
where s=sr+isi. The Gaussianizing homomorphic 
transformations are denoted by gdr(.) and gdi(.) for the real 
and imaginary parts of the dth observed signal in x. The result 
of Gaussianization is the complex Gaussian vector z=zr+izi, 
whose covariance is Σz=QΛQH. The separated outputs are 
given by y=QHz.  
 Theorem 2. If the marginal probability distributions of 
the observed vector are always positive except possibly at a 
set of points whose measure is zero, and the function 
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probability one, the mutual information between the original 
source vector s and the separated output vector y is 
maximized. 
 Proof. Note that, the output is explicitly given by 
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From (13), the Jacobian of y  with respect to s  is: 
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This Jacobian is nonsingular at every possible value of s if 
and only if the third term on the right hand side of (14) is 
nonsingular for every value, since the other two terms are 
nonsingular (the second term is nonsingular with probability 
one as discussed in Theorem 1). Thus with Homomorphic 
ICA, the function from the original sources to the outputs is 
invertible with probability one, which equivalently means 
maximum mutual information between these vector signals. � 
 
D. Homomorphic ICA for Linear Instantaneous Mixtures 
 If the mixture is known to be linear, there are two 
methods one can use to obtain the original sources. The first 
approach is, in principle, equivalent to the minimum mutual 
information algorithms in the literature. Suppose x=Hs, 
where H is the invertible mixing matrix. By sphering the 
observations, we reduce the mixture to a pure rotation, say R, 
so that the Gaussianized vector is y=g(Rs). Since y is (zero-
mean) jointly Gaussian, this joint distribution is characterized 
by its covariance, which can be estimated from samples. 
Then, using the fundamental theorem of probability, the joint 
distribution of the observation vector is found to be 
px(x)=py(g(x))/|∇g-1(g(x))|, where py(.) is given by the 
determined joint Gaussian density. Then, one can minimize 
the divergence between pz(z) and the product of its marginals, 
where z=Qx, Q being the adaptive rotation matrix. 
 The second approach involves training an MLP and it 
requires the knowledge of the source distributions. Suppose 
y=g(Hs) is the Gaussianized observation vector. In theory, 
the following neural network should be able to regenerate the 
original mixtures x from y provided that the mixture is linear: 

, where f(.) is a function that 
individually converts zero-mean unit-variance Gaussian 
distributed variables to the original source distributions. 
Clearly, with the correct choice of hidden layer nonlinearities, 
i.e., f(.) as described above, the network  
could be trained using x as the desired output. Consequently, 
W
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2 would be an estimate of H (with the usual scaling and 
permutation uncertainties), and W1 will encompass PΛ-1/2QT. 
This approach is more practical than the first one and it 
requires training a single-hidden-layer MLP using a least 
squares criterion. Besides, in the case of noisy observations, 

assuming that the measurement noise is Gaussian, this least 
squares approach becomes maximum likelihood as well. 
 
E. Two Interesting Special Situations 
 There are two interesting special situations that might 
occur when using the Homomorphic ICA approach. This 
section is devoted to a short discussion of these cases. 
 The first one is the case when, after Gaussianization, the 
covariance matrix of the Gaussianized mixtures is I 
(assuming that each observation is transformed to a zero-
mean unit-variance Gaussian. In this case, there is no need for 
the PCA stage, and the eigenvector matrix can be 
automatically set to the identity matrix since the Gaussianized 
mixtures are already independent. This situation might arise 
both in linear and nonlinear mixtures. 
 The second interesting observation is for a 2-by-2 linear 
mixture. In this case, assuming that each mixture is 
Gaussianized to have zero-mean and unit-variance, the 
covariance matrix of the Gaussianized mixture vector 
becomes Σz=[1 β;β 1], where β is the cross-correlation of 
these mixtures. Provided that β≠0, the eigenvectors of this 
covariance matrix are [1;1] and [1;-1], regardless of β (if β=0, 
then the first degenerate case is obtained where the 
eigenvectors are the principal vectors). Thus, in these cases 
solving a PCA problem from the sample-estimated 
covariance matrix is not necessary. In simulations, it was 
observed that even with a small number of samples, the PCA 
solution also approached these eigenvectors closely. 
 

IV. SIMULATIONS 
 In order to demonstrate the performance of the proposed 
Homomorphic ICA approach using the Parzen window 
Gaussianization functions described above, computer 
simulations of nonlinear ICA are performed using two speech 
waveforms. The signals are two different sentences uttered by 
two different male speakers and the means are subtracted and 
the powers are normalized. The correlation between the 
original normalized sources are about 0.01, indicating their 
approximate independence (although this assumption does 
not hold exactly). The sources are mixed using the following 
nonlinear invertible mixture: 
 )( 12 sRgRx =  (15) 
where R1 and R2 are randomly selected 2x2 rotation 
(orthonormal) matrices and the nonlinear function g(.) is 
 [ ]T)arctan()arctan(),( 221121 ξαξαξξ =g  (16) 
where αi are uniformly random in [5,10] to guarantee some 
clipping/saturation effects. 
 Two experiments are carried out using 5000-sample and 
20000-sample training sets both randomly selected from the 
available 35000-sample data set. The Gaussianizing functions 
and the PCA matrices are determined using the training data. 
One major problem with this nonstationary source signal 
scenario was observed to be the scarcity of the training data 
at the peak values of the source signals. This typically 
resulted in the Gaussianizing function estimates to be poor 



 
Figure 2. Original sources (top), mixtures (middle), and separated
Gaussianized outputs (bottom), when the separation function is
trained using only 5000 samples. 

 
Figure 3. Scatter plots of the mixture samples versus source samples
(top) and scatter plots of the Gaussianized separated outputs versus
source samples (bottom), when the separation function is trained
using only 5000 samples. 

 
Figure 4. Original sources (top), mixtures (middle), and separated
Gaussianized outputs (bottom), when the separation function is
trained using only 20000 samples. 

 
Figure 5. Scatter plots of the mixture samples versus source samples
(top) and scatter plots of the Gaussianized separated outputs versus
source samples (bottom), when the separation function is trained
using only 20000 samples. 

for the overall signal duration although the training set 
samples are perfectly Gaussianized. As an example 
demonstration, the two source signals, the two mixtures, and 
the two separated Gaussian-distributed outputs (using 5000 
samples and Gaussian kernels with size 0.1) are shown in Fig. 
2. The mixtures and the separated outputs are also shown in 
the scatter plots in Fig. 3 versus the source signals.3 Ideally, a 
clearly visible, narrow monotonic function between the 
outputs and the sources indicate perfect separation. In this 
case (5000-sample training), obviously, the solution 
determined by the training set does not generalize well to new 
data from the speech segment. The same plots are repeated in 
Fig. 4&5 using the solution determined using 20000 samples 
this time (using a different mixing function and a kernel size 
of 0.01). Relative to the scatter plots between the mixtures 
and the sources, the separated outputs yield slimmer scatter 
plots around the origin indicating improvement of 
separability in this regime. This improvement is audible. 
Although compared to the 5000-sample case this result is 
better, the clipping effects are still visible in the separated 
outputs in Fig. 4. The separability in the saturation regime is 
not as successful as the linear regime. This means even at 
20000 samples, the saturations in the mixture are not 

sufficiently represented by the training data; therefore, a 
reliable separating solution is not obtained for these regimes. 

                                                           
3 The signal-to-interference ratio cannot be used meaningfully in nonlinear 
mixtures so the scatter plots are preferred for the lack of a better measure. 

 The phenomenon observed here is a generalization of the 
large-sample requirements imposed by higher order 
cumulants (e.g., kurtosis) in linear ICA. It is clear from the 
scatter plots of Fig. 3&5 that although the separation 
performance is relatively high in small-signal operating 
regimes, the saturation regimes of the mixing nonlinearity are 
not excited sufficiently, thus it becomes more difficult to 
statistically analyze the function behavior. Especially when 
the sources are highly kurtotic (as in speech), many samples 
from the tails are necessary to saturate the nonlinearity. 
 In simulations with linear mixtures, whose results are not 
shown here, much better separation was achieved (although 
still not comparable to existing methods). Consequently, the 
scatter plots of sources versus outputs were much slimmer. In 
fact, Homomorphic ICA should not be the first choice for 
solving linear ICA problems, since many solutions working 
only with adaptive linear matrices can solve this problem. 
 

V. CONCLUSIONS 
 In this paper, we have presented a novel approach to 
nonlinear ICA, called Homomorphic ICA. The proposed 
approach is based on utilizing a homomorphic nonlinear 
transformation such that the marginal distributions of the 



mixtures are converted to Gaussian, which effectively 
transforms the joint mixture density to Gaussian. Then, 
independent components analysis reduces to principal 
components analysis of the transformed mixtures. Due to the 
nature of this solution, it is possible to obtain batch, or on-
line separating function solutions. Although in this paper, we 
have demonstrated one possible way of implementing the 
Homomorphic ICA approach under nonparametric density 
estimation principles, the proposed methodology could yield 
a family of solutions depending on the mixture density 
estimation technique: parametric density estimation could 
lead to analytical nonlinear ICA solutions, non-parametric 
density estimation leads to separation solutions found by 
batch training, while adaptive density estimation techniques 
(such as neural networks or support vector machines) could 
lead to on-line nonlinear ICA. 
 In the simulations, the proposed algorithm based on 
Parzen window density estimates was applied to speech 
separation from invertible nonlinear mixtures. The mixing 
nonlinearities involved saturating functions, which in turn 
lead to the observation that, in nonlinear ICA, there exists a 
generalization of the large-sample condition that typically 
accompanies kurtosis or other cumulant-based methods in 
linear ICA. This phenomenon needs to be studied further to 
understand the generalization capabilities of the nonlinear 
ICA solutions obtained from finite number of samples. 
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