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ABSTRACT

Phased-array magnetic resonance imaging is an important contem-
porary research field in terms of the expected clinical gains in med-
ical imaging technology. Recent research focused on heuristic coil
image recombination methods as well as statistical signal process-
ing approaches. In this paper, we investigate the performance of an
adaptive signal processing approach, namely mixture of competi-
tively trained models. The proposed method has the ability to train
on a set of images and generalize its performance to previously
unseen images. Performance evaluations on real data validate the
effectiveness of this method.

1. INTRODUCTION

Magnetic resonance image (MRI) image reconstruction with
phased-array coils is being widely studied. In this imaging tech-
nique, the challenge is to counter the problems emerging from the
unknown and spatially varying sensitivities of each coil. The Sum-
of-Squares(SoS) method, which introduces bias even in noise-free
case, can be interpreted to estimate the coil sensitivities and imple-
ment optimal linear combination based on these estimates. It can
be shown that SoS asymptotically approaches reconstruction op-
timality as all measurement (coil) SNR levels increase [1]. How-
ever, the high measurement SNR condition is not always satisfied
in practice, especially in phased-arrays, where the coils measure
only a portion of the image. This creates the problem of consid-
ering pure noise pixels equally weighted to pixels with actual sig-
nal. A number of somewhat more sophisticated techniques for im-
age construction with phased-array coils have appeared during the
last decade. For example, as an alternative to SoS reconstruction,
Debbins et al. suggested adding the images coherently after their
relative phase is properly adjusted [2]. Bydder et al. proposed a
method that attempts to estimate the coil sensitivities from the im-
age [3]; although the resulting image has somewhat less variance
than the SoS reconstruction it still suffers from the same problems
with bias. Kellman and McVeigh proposed a method that can use
the degrees of freedom inherent to the phased array for ghost ar-
tifact cancellation [4]. A somewhat more sophisticated technique
has been presented by Walsh et al. who used adaptive filters to im-
prove the SNR in the image [5]. Finally, a Bayesian method using
iterative maximum likelihood with prior information in coil sen-
sitivities is presented recently by the authors [6]. All these enah-
ncement to SoS, without exception, relied on building algorithms
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based on assumptions about the signal model. These approaches
were either heuristic or statistical in nature. An adaptive signal
processing framework has not yet been studied for phased array
MRI. In this paper, we propose a first step to tackling the image
reconstruction problem in multiple-coil MRI scenarios. The ex-
pected gains from this approach include the following: there is
no need to discover signal models that describe the measurements
well (a must in statistical signal processing approaches). More-
over, adaptive systems are more flexible and robust to inconsis-
tencies and nonstationarities in the data as they can be updated on-
line while in use, using a meaningful adaptation paradigm adaptive
systems are as well able to approximate optimal statistical signal
processing approaches (to the limits set by the topology) while re-
quiring less design effort and computational complexity.

Specifically, this paper deals with the reconstruction of MRI
images from multiple coils by a mixture of competitively trained
models. As a first step, the current approach considers linear
modalities in both the model and mixture stages. The training
is performed using competitive LMS to minimize the MSE be-
tween the model outputs and the desired output in the training set.
The performance and the generalization ability of the trained linear
mixture of linear models is verified on experiments using human
neck images from a 4-coil phased-array.

2. THE LINEAR MIXTURE OF LINEAR MODELS FOR
PHASED-ARRAY MRI

Consider a phased-array MRI system with � � � pixels where
each pixel contains �� values (corresponding to the measure-
ments of �� coils for the pixel). For pixel �, ���� �
������� � � � � �������

� is the vector of coil measurements for
pixel �, where � � �� � � � ��� . A commonly used standard
image reconstruction method in phased-array MRI is Sum-of-
Squares (SoS). In this method, the object density (or the image
intensity) is estimated according to the following equation, which
also takes the noise correlation across coils into account.

����� � ��������
���� (1)

Since, in general, the noise covariance matrix is not known a pri-
ori, a small region of pixels consisting purely of noise must be used
to estimate it empirically. This often requires a manual selection of
the noise pixels, which assmes the noise model unity globally. It is
a process that is vulnerable to errors if the noise demonstrates local
properties. Alternatively, in SoS reconstruction, the noise covari-
ance matrix can be ignored and the image estimate can be recon-
structed using the simpler form ����� � ���������. According



Fig. 1. Block diagram of the multiple model mixture and learning
scheme.

to Roemer et al. [7], when using high SNR coil measurements, ig-
noring the noise covariance generates at most an additional ���
error (assuming 	
� noise covariance between channels). In low
SNR measurement situations, however, this might not be the case
and the latter SoS reconstruction will suffer greatly from the noise
correlations.

In order to circumvent these difficulties associated with SoS,
and perhaps to improve the quality of the reconstructed image in
terms of SNR, an adaptive mixture model approach can be em-
ployed. In this paper, we are particularly interested in a mixture
of linear models. Training methodologies for mixture of models
have been reviewed and investigated for image and time series
segmentation previously [8]. In the case of MRI, it is possible
to obtain a sequence of training (calibration) images of a certain
object. The average of the reconstructed images using these mea-
surements, which expectedly possesses much higher SNR, can be
used as the desired output in the competitive framework.

Following the methodologies outlined in [8], the training of
these models is performed using a set of training measurements
consisting of � measurements (images of the same object) taken
by the phased-array system. Each of these � training measure-
ments consists of an input vector constructed by the individual coil
measurements as well as the whitened SoS reconstruction (using
the coil measurements) for each pixel. The desired output ���� is
the same for every training sample and it is the average of whitened
SoS reconstructions. The mixture model and the general training
scheme are depicted in Fig. 1.

The mixture of linear models consist of multiple local ex-
perts whose outputs are ����� � ��

� ���� for 	 � �� � � � ��
where M is the number of linear models and ���� �
������� � � � � ������� ���������

� , where ������� is calculated us-
ing (1) with the noise covariance estimated from a purely noise
region of the coil images. These linear models are trained com-
petitively using LMS [9] (in a winner-take-all fashion), where the
criterion of the competition is the prediction MSE of the desired
outputs for a 
 � 
 region centered at the ��� pixel.

����� �� � ����� � �����������

����� � ����������
�
����

(2)

where  � ������
�	�


�������� ������
� is the winning model

index , 
� is the number of pixels in the local region and �� is the
step size.
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Fig. 2. Transverse (upper row) and coronal (lower row) crossec-
tions of a human neck as measured by the four coils.

The multiple model outputs are then combined to produce an
estimate of the image intensity at the ��� pixel using

����� � ��������� (3)

where ���� �� ����� is the vector of outputs from the multiple
models, and the mixing weights are also linear combinations of
the input, i.e., ���� � � ����. Once the multiple linear models
are trained with competitive LMS, the mixing matrix parameters
� can be trained with LMS using the outputs of the competitive
models as the input and the same desired output.

� ��� �� � � ��� � ����������
�
�����

����� � ����� ������ �
����

(4)

where �� is the step size.
Since, in this paper, we assumed that both linear models and

mixture weights are linear functions of the inputs, in the test phase
where a previously unseen set of measurements are taken to image
an object, the output of the proposed mixture of linear experts can
be written as ����� � ������ �� ����� � ����������. We
note that this final form to reconstruct images in the test phase is
similar to the whitened SoS reconstruction given in (1), except the
weighting matrix is trained using the MSE criterion and the mul-
tiple model concept over a training (calibration) set. The adaptive
approach has the advantage that if the noise is not spatially station-
ary, the local models will specialize to different modalities of the
noise and the adaptive mixture model will still be able to produce
high SNR reconstructions reliably.

3. NUMERICAL RESULTS

In this section, we demonstrate the performace of the proposed
mixture model approach in phased-array MRI reconstruction us-
ing transverse (45 measurements) and coronal (9 measurements)
human neck images collected by a 4-coil MRI system. Sample



measurements from the four coils for both crossections are shown
in Fig. 2. All transverse crossection measurements are used for
training and one of the coronal crossection measurements (the one
that is shown in Fig. 2) is used for testing the resulting network.

The coil measurements of the test image (coronal crossection)
are combined using SoS (without and with whitening) as well as
the proposed mixture model network. The resulting reconstructed
images and their local SNR levels are shown in Fig. 3�4. Espe-
cially the SNR levels in regions where signal exists are important.
Larger SNR at these regions indicate better performance, whereas
the SNR levels in the purely noise regions are not significant due
to the computation method for this quality measure. Since a refer-
ence (a ground truth) is not available in MRI, typically the image
quality is measured by this measure called SNR, which in fact does
not conform to the traditional definition of SNR in signal process-
ing. The procedure for computing the SNR is as follows:
1. Find a reference region in the reconstructed image where there
is no signal (i.e., a pure noise region).
2. Compute the variance of the noise in this reference region.
3. For all other regions, compute the signal power (which includes
both the actual signal and the remaining noise in that region).
4. Calculate SNR in a region as the ratio of the power of the signal
in that region to the variance of the noise in the reference region.
Convert SNR to dB.
From Fig. 3�4, focusing only on the SNR levels in the signal re-
gions, we observe that the mixture of models approach improved
the performance upto 2dB and 12dB over that of the SoS with
whitening and SoS without whitening methods, respectively. The
gray region at the upper-left corner is used as the noise reference
in computing the SNR levels.

4. CONCLUDING REMARKS

The sum-of-squares algorithm is a very simple and practical ap-
proach in phased-array MRI that yields acceptable image recon-
structions from high SNR measurements. The quality of the SoS
reconstruction, however, is vulnerable to the measurement noise
levels in each coil as it is common to have phased-arrays such that
the coil arrangement leads to measurements that specialize to cer-
tain regions of the images. In such cases, for a given pixel, some
coils will measure only noise, yet SoS will consider them as valid
measurements in the combination.

In this paper, we proposed a mixture of multiple models ap-
proach for phased-array MRI, which can circumvent this and other
possible problems that might influence the SoS reconstruction
quality (such as noise non-stationarity). This method relies on
the local approximation capabilities of the adaptive models, thus
its performance can be improved by modifying the modeling units
properly. As an initial step, here we investigated the performance
of linear local models combined with a linear weighting scheme
and showed 2dB SNR improvement upon the best performance
that can be achieved by the SoS method.

It is concievable that further improvement of the performance
is possible by considering nonlinear models combined with non-
linear mixing schemes. In addition, the competitive training strat-
egy that is followed in training the multiple models help to create
image reconstruction methods that are more robust to spatial non-
stationarities in measurements. Furthermore, under the described
framework, a continuously learning image reconstruction scheme
can be obtained since every testing measurement can as well be
utilized as a training sample to update the weights of the mixture

and the multiple models. This can also help account for temporal
nonstationarities in the parameters of the MRI equipment and the
signal and noise characteristics.

The phased-array MRI research has mostly focused on signal
processing techniques that stem from heuristics of more traditional
statistical techniques. There is very little work that incorporates
the adaptive signal processing techniques to the solution of this
important and practical problem. Certainly, there is much to be
discovered in terms of benefits of applying adaptive signal pro-
cessing techniques to phased-array MRI.
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Fig. 3. Reconstructed test images for a coronal crossection from
a human neck, (a) SoS without whitening (b) SoS with whitening
(c) mixture of models.
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Fig. 4. SNR performances of the reconstructed test images for a
coronal crossection from a human neck, (a) SoS without whitening
(middle row) SoS with whitening (c) mixture of models.


