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ABSTRACT 
 
In this paper, we propose minimizing the Fisher 
information of the error in supervised training of linear 
and nonlinear adaptive filters. Fisher information 
considers the local structure of the error probability 
distribution and therefore, it is expected to result in more 
robust solutions compared to other statistics such as 
minimum mean-square-error or minimum-error-entropy. 
A gradient-based training algorithm based on a 
nonparametric estimator of Fisher information is 
presented and the performances of the three mentioned 
optimization criteria is compared using Monte Carlo 
simulations. 
 
 

1. INTRODUCTION 
 
Traditionally, supervised training of adaptive filters is 
peformed using the mean-square-error (MSE) as the 
optimality criterion. The main reason for the wide use of 
MSE lies in the fact that quadratic criteria combined with 
linear systems result in analytically tractable mathematics 
and lead to solutions like the Wiener-Hopf equation [1]. 
In the case of linear systems and Gaussian distributed 
signals, second-order statistics are able to extract all the 
information present in the data, thus yield optimal training 
solutions in an information theoretic perspective. 

However, many contemporary signal processing 
problems extend beyond the linearity and Gaussianity 
assumptions, therefore to achieve optimality in an 
information theoretic framework, one has to go beyond 
second-order statistics as optimality criteria in adaptation. 
In order to achieve these extensions to information 
theoretically optimal adaptation rules, we need to consider 
the higher-order statistics of the signals since arbitrary 
distributions, unlike the Gaussian, are not only 
characterized by their second-order statistics. 

Information theoretic criteria provide natural and 
intuitive means of dealing with higher-order statistics of 

the signals, since they are derived based on particular 
postulates such as additivity [2]. Entropy, which measures 
the average information content in a random variable with 
a particular probability distribution was previously 
proposed as a criterion for supervised adaptive filter 
training by the authors and it was shown to provide better 
neural network generalization compared to MSE [3]. 

As can be intuitively understood from the nature of 
entropy and from the experimental results in previous 
publications, minimizing the error entropy (MEE) tends to 
result in spikier optimal error distributions compared to 
MSE. In certain situations, this spikiness of the error 
distribution might be undesirable, especially when we aim 
for smooth error distributions. While the minimum error 
entropy criterion will maximize the information transfer 
from the training data to the weights of the adaptive 
system by minimizing the expected information content of 
the residual error, it does not explicitly act to improve the 
robustness of the solution in terms of variance in 
estimated optimal weights. 

A criterion that will consider the local smoothness 
and structure of the error distribution is Fisher information 
[2]. Minimizing the Fisher information of the error will 
result in an optimal solution such that small perturbations 
in the error distribution due to variances in the weights 
will cause minimal fluctuations in the criterion. The 
connection between Fisher information and the Cramer-
Rao bound [4] also provides another motivation for using 
this quantity as an optimality criterion. Nevertheless, at 
this time, there is no rigorous mathematical link between 
minimizing the error Fisher information and minimizing 
the variance of the optimal weight estimates. 

Since, in general, the signal distributions are either 
unknown or difficult to guess, a nonparametric approach 
to the estimation of the distributions involved in the 
problem will provide a more generic solution to the 
adaptation problem. Parzen windowing is a simple and 
data efficient density estimation technique, which results 
in smooth estimates, whose bias and variance can be 
controlled by the width of the kernel function used (called 
the kernel size). The smoothness is particularly important 
in adaptation, since first or second order gradient methods This work was supported by NSF grant ECS-0300340.



are often used in learning algorithms. In addition, we have 
observed that there is a functional similarity between the 
kernel size of the Parzen window density estimate and the 
width of the smoothing functional in convolution 
smoothing method for global optimization [5]. Thus, this 
free parameter might also serve as a tool to achieve global 
optimization; however, this aspect of the proposed 
algorithm will be investigated in a future paper. 

This paper is organized as follows: first, a brief 
introduction of Fisher information is presented; second, an 
analytical proof that shows the preservation of the global 
minimum of Fisher information when it is estimated by 
Parzen windowing is given; next, the gradient training 
algorithm for an MLP using the minimum error Fisher 
information criterion is derived; and finally, the 
performance of the proposed training algorithm is 
compared with that of MSE and MEE on single-step 
chaotic time-series prediction. 

 
 

2. FISHER INFORMATION AND ITS ESTIMATION 
 
In the parameter estimation context, the Fisher 
information matrix is defined as the expected value of the 
Hessian of the log-likelihood of the data with respect to 
the parameter vector [4]. 
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In (1), p(x;θ) is the data likelihood function parameterized 
in terms of the vector θ. The well-known Cramer-Rao 
bound is expressed in terms of this matrix as 

, where θ  is any unbiased estimator of 
the underlying true parameter vector. 
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 In the context of supervised learning, we will use a 
different definition of Fisher information, however the 
latter is still related to the definition in (1) when the 
parameter vector θ is assumed to be simply the mean of 
the data distribution. In this case, the Fisher information 
for a random variable X with distribution p(x) becomes 
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It can be shown that this version of Fisher information is 
affectively measuring the Kullback-Leibler divergence 
between p(x) and p(x+δ x) [6]. Hence, in a supervised 
learning situation, where (2) is evaluated and minimized 
for the error signal, we expect the optimal solution to 
result in a set of weights such that small perturbations in 
the weights will result in minimal localized perturbations 
in the error distribution. The measure of minimality for 

these perturbations is the Kullback-Leibler divergence and 
the error distribution is expected to be smooth and closer 
to uniform compared to MSE and MEE. 
 In practice, the Fisher information of the error signal 
must be estimated from its samples. This requires a 
smooth (i.e., continuous and differentiable) estimate of its 
distribution. Parzen windowing is a suitable method [7]. 
Given independent and identically distributed (iid) 
samples {e1,…,eN}, the error distribution can be 
approximated by 
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where κ(x;σ 2) is typically a zero-mean Gaussian kernel 
with standard deviation σ . The Fisher information can 
then be estimated using 
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 Now consider the error’s Fisher information (EFI) in 
the first form given in (2): . 

Note that this expression is invariant to changes in the 
mean of the probability distribution, therefore we can 
assume the mean is zero whenever necessary, without loss 
of generality. The gradient of this quantity with respect to 
a particular error sample e

( ) ∫ ′= ξξξ dppeF ee )(/)(2

k is (assuming Gaussian kernels) 
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This gradient evaluates to zero for the sample set 
e=[e1,…,eN]T=0. Thus, this point in the error space is a 
stationary point of the cost function (if achievable). 
Evaluating the eigenvalues of the Hessian matrix of the 
criterion at this point, we also observe that it is a local 
minimum (with a zero eigenvalue along the direction 
where only the mean of the error changes, as expected 
from the mean-invariance property of Fisher information). 



Specifically, the diagonal and off-diagonal entries of 
the Hessian at this point are found as 
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This matrix has the following eigenvalues: 0 with 
multiplicity 1 corresponding to the eigenvector [1,…,1]T  
and >0 with multiplicity N-1 corresponding to the 
eigenvectors spanning the remaining orthogonal subspace. 

4/4 σN

 In summary, minimizing the Parzen window estimate 
of Fisher information will try to minimize the error in the 
vicinity of this small-error solution. 
 
 

3. GRADIENT LEARNING USING THE FISHER 
INFORMATION CRITERION 

 
Suppose we are given a training set in the form of input 
vectors xk and desired outputs dk. Consider the 
optimization of the parameters of a general class of 
nonlinear adaptive systems denoted by yk=g(xk;w). The 
weights are updated according to the steepest descent rule 
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where the gradient is evaluated from 
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This learning rule can be interpreted in a particle 
interaction framework, where the error samples ek are 
physical particles interacting with each other through the 
kernel function according to the rules defined by the 
gradient update expression in (8). The particles exert 
forces on each other; hence they move in space. However, 
the nonlinear filter topology imposes a constraint on the 
particles such that their movements are restricted to a 
manifold that is defined by this topology. A similar 
analogy was formed for the entropy criteria as well [8]. 

4. CHAOTIC TIME-SERIES PREDICTION 
 
In this section, we compare the optimal solutions offered 
by three criteria: MSE, MEE and Fisher information. The 
example problem selected is the single-step prediction of 
the chaotic laser time-series [9]. This time-series is 
particularly difficult to predict at the transition points 
where the signal value collapses suddenly after a slow 
regime of expansion. Three structurally identical 
14:4(tanh):1(linear) TDNNs [10] are trained using these 
three criteria and the mean value of the error is set to zero 
by adjusting the bias of the linear output processing 
element of the TDNNs for all three criteria.  
 The training set consists of 1000 samples from the 
time-series and in order to avoid local optima to some 
extent, training is started from 100 randomly selected 
initial conditions and the optimal weights by all three 
criteria are selected as the weights that perform best 
according to each individual cost function. 
 The final TDNNs are then subjected to a test set 
consisting of 4000 samples in the single-step prediction 
framework. Fig. 1 shows the histograms of the error 
distributions of the three TDNNs on this test set. The 
dynamic ranges of the error samples are [-0.5788,0.6459], 
[-0.7859,0.6584], and [-0.4512,0.5329] for MSE, MEE, 
and EFI, respectively. While the EFI criterion results in 
the smallest dynamic range for the test error, the error 
distribution at smaller values (around zero) are relatively 
more spread to approach the targeted uniformity, as we 
observe in Fig. 1. Upon investigation of the predictions of 
MSE- and MEE-trained TDNNs, we find out that the 
large errors occur at the points of collapse. EFI performs 
better at these locations at the cost of slightly increased 
error in the expansion regime of the time-series. A sample 
collapse point in the test sep is shown in Fig. 2 with the 
predictions made by the three TDNNs. Notice that the 
EFI-trained network performs better in this region 
compared to the MSE- and MEE-trained networks. 
 A particularly difficult problem is to design a closed-
loop system that can continue to iteratively predict the 
chaotic time-series using its previous predictions. Clearly 
any network will diverge while performing in this closed-
loop structure due to the very nature of chaotic signals. 
Even the smallest error will propagate through the system 
to create a divergence in the prediction error. 
Nevertheless, a good indicator of quality of a model for 
chaotic systems is how long their prediction accuracy 
survives in this closed-loop prediction scheme. Therefore, 
we subject the three TDNNs trained by the optimization 
criteria (on the same training data set) to this test and let 
them iteratively predict the laser time-series by feeding 
their own outputs back as inputs. In this procedure, we 
test the TDNN models on 1000 test sets (each of length 
60) starting from randomly selected initial points to 
obtain a Monte Carlo evaluation. The normalized MSE 



and the standard deviation values for the three predictions 
over the MC test are 1.0306 1.0291 (MSE), 
1.4562 1.5448 (MEE) and 1.0690 ± 0.4743 (EFI). A 

representative prediction output is shown in Fig. 3. 
Clearly, the MSE and MEE trained networks fail to 
follow the signal at this abrupt nonstationarity, while the 
EFI-trained TDNN maintains a relatively high accuracy 
in its predictions of the signal.  
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Figure 1. Test error histograms for MSE, MEE, and EFI trained TDNNs.
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Figure 2. A sample collapse point in the test set from the laser time-
series. Actual and predicted values for MSE, MEE, and EFI trained
TDNNs in open-loop testing. 
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Figure 3. Closed-loop prediction at a sample collapse point in the test set
using the MSE, MEE, and EFI trained TDNNs. 

  
 

5. CONCLUSIONS 
 
Supervised training of nonlinear adaptive filters using 
non-Gaussian data requires considering more information 
than what is present in only the second-order statistics. 
Therefore, in this paper, we proposed using the Fisher 
information as an optimality criterion. A nonparametric 
estimator based on Parzen windowing is presented and the 
performance of the resulting training methodology is 
compared with mean-square-error and error-entropy 
approaches on the laser time-series prediction example. 
The Fisher information approach yielded a more robust 
optimal solution that was able to cope with the abrupt 
nonstationarities in the data more effectively. However, 
this came at a cost of increased error at the relatively 
stationary regimes of the signal. 
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