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ABSTRACT 

 
Estimation of the parameters of an unknown system is an 
important problem in signal processing. The classical Mean 
Squared Error (MSE) criterion and its variants have been widely 
used to solve this problem. However, it is well known that MSE 
criterion produces biased parameter estimates when the signals 
of interest (especially the input) are corrupted with additive 
noise having arbitrary or no coloring (white). Alternative 
approaches require additional system constraints and explicit 
estimation of the noise covariances. Recently, we proposed a 
new criterion called the Error Whitening Criterion (EWC) along 
with associated algorithms that solved the problem when the 
additive disturbances are white. However, the performance of 
EWC is not satisfactory when the disturbances are correlated 
(colored). In this paper, we propose a method based on the 
principles of EWC that can consistently estimate the parameters 
of an unknown arbitrary linear system in colored input noise 
without estimating the noise covariances. We then present a 
novel stochastic gradient algorithm that estimates the optimal 
parameters in an on-line fashion. We will briefly discuss the 
convergence of this algorithm and present extensive simulation 
results to show the superiority of this criterion over MSE.  

 
 

1. INTRODUCTION 
 
Parameter estimation or system identification is a very important 
problem in signal processing and control. The framework for the 
conventional approaches that solve this problem is typically 
built around the popular Mean Squared Error (MSE) criterion 
[1]. This criterion offers cost-efficient stochastic (LMS) and fast 
converging recursive algorithms (RLS) that iteratively estimate 
the unknown system parameters. However, MSE has a genuine 
limitation that can seriously limit its applicability. The estimates 
obtained with MSE are biased when the signals of interest (input 
and output) are corrupted with additive noise with arbitrary 
coloring. The recently proposed Error Whitening Criterion 
(EWC) extends the MSE cost function and has been shown to 
produce unbiased parameter estimates when the additive noise is 
white [2], [3]. If the whiteness assumption is relaxed, EWC fails 
to give an improvement over MSE. There are other methods that 
attempt to solve this problem. Regalia gave a conceptual 
treatment for the IIR filter estimation based on equation-error 
techniques with the monic constraint replaced by a unit-norm 
constraint [4]. Douglas et al. extended the work to colored noise 
case in [5]. However, these methods require estimation of the 
noise covariances from the data, which is not desirable. The 
Instrumental Variable (IV) technique is traditionally limited to 

white noise, and the generalizations to the colored noise require 
additional prewhitening filters [6]. In this paper, we propose a 
method to estimate the unknown system parameters without 
computing the input noise covariance matrices under the 
assumption that the noise on the desired signal is white. Firstly, 
we will present the cost function and then derive the analytical 
solution that provides an unbiased estimate of the underlying 
system parameters. We restrict ourselves to the case of unknown 
linear FIR systems in this paper. Generalizations to the IIR filter 
estimation and the associated stability issues will be dealt in a 
later paper.    

 
2. CRITERION 

 
A traditional setting of the system identification problem is 
shown in fig 1. Suppose noisy training data pair  is 

provided, where  and  
with  as the noise-free input vector at discrete time index k, 

, the additive noise vector with arbitrary covariance 

 on the input,  being the noise-free desired 
signal and u  being the additive white noise added to the 
desired signal. We further assume that the noises  and  are 
independent from the data pair and also independent from each 
other. Let the weight vector (filter) that generated the noise-free 
data pair  be , of dimension N. We will assume that 
the length of , the estimated weight vector is N (sufficient 
order case). Then, the error sample  is simply given 

by . Consider the cost function in (1).  
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=uuEIf we assume that the noise uk is white, then ∆−kk , and 
(2) reduces to functions of only the clean input and the weights. 
The input noise never multiplies itself; hence it gets eliminated. 
Further, the cost function in (1) simplifies to  
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correlators having linear complexity. Also, a recursive 
relationship for the evolution of this matrix over iterations can 
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development of a low cost stochastic algorithm to compute and 
track the optimal solution given by (6).  
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MODEL 
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3. STOCHASTIC ALGORITHM 
 
Taking the expectation operator out of the cost function in (1), 
we obtain an instantaneous cost given by, 
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The direction of the stochastic gradient of (7) will then depend 
on the instantaneous cost and the resulting weight update 
equation is given by, 
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where, 0>η  is a small step-size. Owing to the presence of 
multiple terms (constraints) in the gradient, the complexity of 
the update is  which is higher than that of regular LMS 
type stochastic updates. We will now briefly discuss the 
convergence of this algorithm to the optimal solution both in the 
noisy as well as noise-free scenarios. 
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Proof. It is obvious from the previous discussions that the cost 
function in (8) has a single stationary point Tww =* . The 
weight update becomes zero only when the cost goes to zero 
thereby zeroing the gradient. Consider the weight error vector 
defined as kk wwε −= * . From (8), we get, 
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Taking the norm of this error vector and allowing the error 

vector norm to decay asymptotically by forcing 2
k

2
1k εε <+ , 

we obtain the bound in (9). The error vector will eventually 
converge to zero by design, and since the gradient becomes null 

at the true solution: 0lim 2 →
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Lemma 3. In the noisy data case, the stochastic algorithm in (8) 
converges to the stationary point w  in the mean provided 
that the step size is bound by the inequality 
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Proof. Again, the facts about the uniqueness of the stationary 
point and it being equal to the true filter hold even for the noisy 



data case. The convergence to this stationary point in a stable 
manner will be proved in this lemma. Following the same steps 
as in the proof of the previous lemma, the dynamics of the error 
vector norm can be determined by the difference equation, 
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where,  . Applying the expectation 

operator on both sides of (11) and letting 
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Simplifying further, we get, 
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Using Jensen’s inequality, (13) can be reduced further to result 
in a loose upper bound on the step-size. 
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Notice that the RHS of (14) now resembles the cost function in 
(1). Rearranging the terms, we get the upper bound in (10).       � 
The important point is that the bound is practical as it can be 
numerically computed without any knowledge of the actual filter 
or the noise statistics.   
 

4. SIMULATIONS 
 
System Identification: We will show the results obtained using 
the new criterion in the problem of system identification with 
colored input noise. The experimental setup is similar to the 
block diagram shown in fig 1. We generated 50000 samples of 
correlated clean input signal and passed it through an unknown 
random FIR filter to create a clean desired signal. Gaussian 
random noise was passed through a random coloring filter (FIR 
filter with 400 taps) and then added to the clean input signal. 
Three different input SNR values of 5, 0 and -10dB and three 
different true filter lengths of 5, 10 and 15 taps were used in the 
experiment. For each combination of SNR value and number of 
taps, 100 Monte Carlo runs were performed. During each trial, a 
different random coloring filter as well as input/desired data was 
generated. We computed the Wiener solution for MSE as well as 
the optimal solution given by (6). The performance measure for 
the comparison was chosen as the error vector norm given by, 

[ ]*10log20 ww   −= Tnormerror     (15) 

where,  is the optimal solution estimated using samples and 
 is the true weight vector. Fig. 2 shows the histograms of the 

error vector norms for the proposed method as well as MSE. The 
inset plots in fig. 2 show the summary of the histograms for each 
method. Clearly, the performance of the new criterion is superior 
in every experiment given the fact that the criterion neither 
requires any knowledge of the noise statistics nor does it try to 
estimate the same from data.  
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Stochastic Algorithm: We will now analyze the performance of 
the stochastic gradient algorithm given by (8) in the same 
framework of system identification. A random four tap FIR filter 
was chosen as the true system. The input SNR (colored noise) 
was fixed at 5dB and the output SNR (white noise) was chosen 
to be 10dB. The step-sizes for the proposed method and the 
classical LMS algorithm were fixed at 1e-5 and 8e-4 
respectively. 100 Monte Carlo runs were performed and the 
averaged weight tracks over iterations are plotted for both 
algorithms in fig 3. Note that our method gives a better estimate 
of the true parameters (shown by the square markers) than the 
LMS algorithm. The weight tracks of the proposed gradient 
method are noisier compared to those of LMS. One of the 
difficulties with the stochastic gradient method is the right 
selection of step-size. We have observed that in cases when the 
noise levels are very high, we require a very small step-size and 
hence the convergence time can be high. Additional gradient 
normalizations can be done to speed up the convergence. Also, 
the shape of the performance surface is dependent on the 
correlations of the input and the desired signals at different lags. 
If the performance surface is relatively flat around the optimal 
solution, we have observed that including a trivial momentum 
term in the update equation increases the speed of convergence.  
    In order to verify the local stability of the stochastic 
algorithm, we performed another experiment. This time, the four 
taps of the true system were [0.5, -0.5, 1, -1]. The initial weights 
for both LMS and the gradient algorithm in (8) were set to the 
true parameters. Both input and output SNR levels were kept at 
10dB and the step-sizes were the same as in the previous 
experiment. Figure 4 shows the weight tracks for LMS and the 
proposed gradient algorithm. Notice that LMS diverges from this 
point immediately and converges to a biased solution. In 
comparison, the proposed algorithm shows very little 
displacement from the optimal solution (stable stationary point).  
    In the above experiments with system identification, we 
assumed that the filter order is at least equal to the true system. 
However, in many cases, this a priori knowledge is unavailable. 
In such cases, the problem becomes even harder with the 
presence of noise. In order to understand the behavior of the 
proposed method in the under-modeling case, we performed a 
simple experiment. We chose a 4-tap FIR system and tried to 
model it with a 2-tap adaptive filter. Figure 5 shows the weight 
tracks for both LMS and the stochastic algorithm. Surprisingly, 
the gradient algorithm converged to a solution that matched 
closely with the first two coefficients of the actual system. This 
encourages us to state (speculatively) that the criterion will try to 
find a solution that matches the actual system in some sense. 
However, there is still not enough evidence to claim that the 
proposed method can provide exact “coefficient matching.” To 
the best of our knowledge, none of the techniques have the exact 
matching property given noisy data.    
 

5. CONCLUSIONS 
 

In this paper, we proposed a new criterion to solve the problem 
of system identification in the presence of colored input noise. 
Existing techniques either result in a biased solution or require 
explicit estimation of the noise covariance matrices to obtain an 
unbiased estimate of the unknown system. The new criterion 
exploits the correlations between the error and the desired 
signals at different lags and does not require the estimation of 



the noise covariances. We further proved that the optimal 
solution with this cost function is always unique and approaches 
the underlying system under the sufficient order assumption. We 
then derived a simple stochastic gradient algorithm to estimate 
the optimal solution in an online manner. Brief discussions on 
the convergence were presented. Simulation studies showed the 
effectiveness of this criterion as well as the stochastic gradient 
algorithm. In this paper, we limited our focus to the sufficient 
order scenario only. In cases, when the model order is unknown 
the problem becomes more difficult and has been seldom 
addressed in literature. Currently, we are working on the 
theoretical aspects pertaining to the under-modeling case and the 
conditions under which the estimates obtained by the proposed 
method match with the actual system. Future work will also be 
focused around extending this method for handling colored noise 
in the desired signal. 
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Figure 3- Weight tracks for LMS and the stochastic gradient  
algorithm in the system identification example. 

 

Figure 4- Weight tracks for LMS and the stochastic gradient 
algorithm showing stability around the optimal solution. 

Figure 5- Weight tracks for LMS and the stochastic gradient  
algorithm in the case of undermodeling. 

 

 

 
Figure 2- Histogram plots showing the error vector norm in dB for the 
proposed and MSE criteria. 
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