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ABSTRACT 

 
Recently we have proposed a recursive estimator for 
Renyi’s quadratic entropy. This estimator can 
converge to accurate results for stationary signals or 
track the changing entropy of nonstationary signals. In 
this paper, we demonstrate the application of the 
recursive entropy estimator to supervised and 
unsupervised training of linear and nonlinear adaptive 
systems. The simulations suggest a smooth and fast 
convergence to the optimal solution with a reduced 
complexity in the algorithm compared to a batch 
training approach using the same entropy-based 
criteria. The presented approach also allows on-line 
information theoretic adaptation of model parameters. 
 
 

 
1. INTRODUCTION 

 
Mean square error (MSE) is the fundamental performance 
measure in training adaptive linear filters and neural 
networks. For the linear cilter case, the Wiener-Hopf 
equation yields the analytical solution for the optimal 
filter coefficients [1]. Similar analytical solutions exist for 
unsupervised training problems involving linear filters and 
second-order statistics (e.g., principal components 
analysis). Second-order statistics are able to extract all 
information under the assumption of Gaussianity. 
However, in practice neither data distributions are 
Gaussian, nor we always use linear adaptive filters. These 
more realistic situations involving nonlinear models and 
non-Gaussian data distributions require the consideration 
of higher order-statistics for optimal information 
processing. Thus, in this respect, second-order statistics 
become suboptimal. 

Therefore, for optimal information processing, it is 
necessary to consider criteria that emerge from 
information theory. These criteria (e.g., entropy and 
mutual information) not only deal with the second-order 
statistics, but also naturally take into account the higher-
order statistics in adaptive filter training. 

Entropy, defined by Shannon [2], is a measure of 
average information contained in random variable with a 
certain probability distribution function. Thus, for both 
supervised and unsupervised learning, it becomes a 
suitable criterion: in supervised training, minimizing the 
entropy of the error corresponds to minimizing the 
information content of this signal, whereas in 
unsupervised training maximizing the entropy of the filter 
output will guarantee that maximum amount of 
information is transferred from the filter input to its output 
(i.e., maximum mutual information between the filter’s 
input and output is achieved). 

Adaptation in nonlinear and non-Gaussian domains 
needs to be tackled using nonparametric approaches in 
general, since parametric families of the data distributions 
involved are simply unknown or very difficult to obtain or 
guess. Hence, a nonparametric entropy estimator is 
essential for information theoretic learning. Although 
many entropy estimators exist in the literature [10], most 
are unsuitable for on-line entropy manipulation. This 
process requires a recursive estimator that is able to 
update the estimate on a sample-by-sample basis as new 
data arrives to the input of the filter. The recursive entropy 
estimator we have proposed earlier is, therefore extremely 
suitable for this task [5]. An alternative to recursive 
estimates is to use stochastic gradients. We have 
previously proposed a stochastic gradient rule for entropy 
manipulation in training adaptive systems [9]. We will 
demonstrate that the stochastic information gradient 
presented in this earlier publication remains as a special 
case of the recursive information gradient (RIG) that we 
present here. The main advantage of recursive updates 
over stochastic ones is the reduction of misadjustment, 
which is the fluctuation of the weight vectors in the 
vicinity of the optimal solution [3,4].  

In the following sections, we describe the recursive 
estimator for entropy and its recursive gradient (called 
RIG). In addition, we demonstrate the performance of the 
proposed algorithm in supervised and unsupervised 
adaptation scenarios, namely, linear system identification, 
nonlinear time-series prediction, and projection pursuit. 

 
 



2. RECURSIVE RENYI’S ENTROPY ESTIMATOR 
 
For a random variable X with probability distribution 
function (pdf) fX(x), Renyi’s entropy of order-α  is [6] 
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Using Parzen window with kernel function (.)σκ  to 
estimate the pdf from its samples {x1,…,xN}, and 
approximating the expectation operator with sample mean, 
we obtain the following estimator for Renyi’s entropy [7] 
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The quadratic entropy, for α =2, is given and estimated by 
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The argument of the ‘log’ is named as the quadratic 
information potential due to the similarity between this 
quantity and the physical potential energy of an ensemble 
of particles. Investigating the structure of the 
nonparametric estimator for quadratic information 
potential in (3), we obtained a recursive formula to update 
the information potential estimate when a new sample is 
acquired.  

Assuming that the kernel function is chosen to be an 
even-symmetric pdf, the information potential estimate at 
time k, denoted by kV , is given by  
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When a new sample arrives, kV  is modified by using the 
new sample xk+1 as 
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When the information potential estimate is updated, the 
new entropy estimate can be obtained by 
calculating 1 1( ) log ( )k kH X V X+ += − . This exact recursive 
algorithm is useful for estimating the entropy of stationary 
signals, however it is not suitable for nonstationary signals 
due to its increasing memory depth. Therefore, a 
forgetting recursive entropy estimator is necessary to 
serve satisfactorily in such situations. The forgetting 
recursive entropy estimator updates the quadratic 
information potential according to [5] 
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The parameters,λ, L, and σ are called the forgetting factor, 
window length, and kernel size, respectively, and they all 
affect the convergence properties of this recursive entropy 
estimator. Increasing the forgetting factor results in faster 

convergence and larger estimation variance, increasing the 
window length results in smaller estimation variance and 
has no effect on convergence time, and finally, increasing 
the kernel size results in smaller variance and larger 
estimation bias. 

The forgetting recursive entropy estimator reduces the 
computational complexity from O(N2) to O(L). This is a 
dramatic reduction in the computation requirements. 
These properties make the forgetting recursive entropy 
estimator appealing for training adaptive systems. Hence, 
in the following demonstrations using entropy criteria, we 
will employ the forgetting recursive entropy estimator. 

 
 

3. SUPERVISED LEARNING 
 
Consider the on-line supervised training of an adaptive 
filter )( kkg w;x  where [ ]TMk kwkwkw )(),...(),( 21=w  is the 
weight vector and xk is the input vector and kd is the 
desired signal at time k. The instantaneous error is [8] 

)( kkkk gde w;x−=  (7) 
The weights of the filter are adapted to minimize the error 
entropy using gradient descent. Since minimizing 
quadratic entropy is equivalent to maximizing the 
quadratic information potential, the following update rule 
can be employed: 
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The gradient will be updated according to the RIG 
formulation, which, in this case corresponds to 
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Notice that if 1=λ , then this recursive gradient reduces to 
the stochastic information gradient (SIG) [9]. 
 
 
3.1. Linear system identification using FIR filters 
 
Consider the case where the unknown system is an FIR 
filter. For simplicity, we assume that our adaptive FIR 
filter is sufficiently long. In practice, both the input and 
the desired signals are generally contaminated by 
independent additive white Gaussian (AWGN). In this 
example, we further assume that they have equal variances 
for simplicity.  

We performed Monte Carlo simulations using a 
forgetting factor of 0.3. A good rule of thumb we use to 
select the kernel size (for Gaussian kernels) is to set it 
equal to 0.2 times the estimated standard deviation of the 
variable of interest. The performance results are 



summarized in figure 1 in the form finaltrueE ww −  

versus input SNR, where wtrue and wfinal are the weight 
vectors of the reference model and the adaptive filter after 
convergence (1000 samples and iterations). 

 

3.2. Time-series prediction using TDNN 
 
Next we use recursive Renyi’s entropy estimator to train a 
4:4:1 (4-tap delay line input, 4 tanh-neurons in hidden 
layer and 1 linear output neuron) TDNN [11] to perform 
single-step forward prediction of the Mackey-Glass 
chaotic time-series, which often serves as a benchmark 
data set in testing prediction algorithms. This signal has a 
delay-based chaotic behavior and an attractor associated 
with the given delay amount. A time-series is generated 
by sampling the MG30 signal at T=1s intervals whose 
continuous time dynamics are defined by 
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The integration is performed using the Runge-Kutta4 
technique with a time-step of 0.1s. A total of 10000 
samples are generated using a random initial condition. 
Figure 2 shows the predictor output converging to the 
desired signal as the weights of the TDNN are updated 
using RIG and the minimum error entropy criterion. 

In this experiment the kernel size, window length and 
forgetting factor are σ =0.1, L=5, λ =0.3, respectively.  
 
 

4. UNSUPERVISED LEARNING 
 

In this section, we discuss the raining of a linear filter in a 
projection pursuit context. Projection pursuit is the 
problem of determining interesting linear projections of 
vector signals. For example, principal components  are 
interesting in the maximum variance sense. In this 
example, we take the minimum entropy direction as the 
desired projection of the data. A synthetic 2-dimensional 
vector signal using zero-mean, unit-variance Gaussian and 
uniform random variables is generated and these are 
mixed by a rotation matrix. 
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Since the Gaussian distribution has maximum entropy 
among all-fixed-variance distributions, we expect the 
RIG-based projection pursuit algorithm to determine the 
uniformly distributed projection and track this direction 
should it change in time. After every update, the weight 
vector is normalized to unit norm to prevent it from 
shrinking to zero. 

In this experiment, we used 0.3, 100 and 0.1 for the 
forgetting factor, window length, and kernel size, 
respectively. Figure 3 shows the variation of the actual 
angle of the desired direction (piecewise stationary) and 
the RIG-projection pursuit algorithm estimates with 
respect to time. 
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Fig 1. Average model error versus SNR. 
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Fig 2. Mackey-Glass series prediction by TDNN.
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Figure 3. Nonstationary projection pursuit: tracking the 
desired direction 



5. CONCLUSIONS 
 

We are currently at a point where second-order statistical 
signal processing is not sufficient for our purpose 
anymore. Information theory provides a natural extension 
of many familiar ideas such as variance and correlation to 
nonlinear and non-Gaussian situations in the form of 
entropy and mutual information. Information theoretic 
signal processing requires the knowledge or the estimation 
of signal probability distributions so that the necessary 
information theoretic statistics can be calculated and 
manipulated by adaptation algorithms. In this paper, we 
demonstrated how to use the Parzen window based 
recursive estimator for Renyi’s quadratic entropy and its 
gradient (RIG) for supervised and unsupervised adaptive 
signal processing. In previous studies, the data efficiency 
and the robustness of this Parzen window based 
nonparametric entropy estimator have been demonstrated 
[12]. The recursive information gradient presented here 
eliminates the high computational complexity drawback 
of the training algorithms associated with this entropy 
estimator. It also allows entropy-based on-line adaptation 
on a sample-by-sample basis without suffering much from 
misadjustment. Simulation results using linear system 
identification, chaotic time-series prediction, and 
projection pursuit suggest the usefulness of the proposed 
RIG-based learning rules. 
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