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Abstract. This paper addresses the issue of quantifying asymmetric functional 
relationships between signals. We specifically consider a previously proposed 
similarity index that is conceptually powerful, yet computationally very 
expensive. The complexity increases with the square of the number of samples 
in the signals. In order to counter this difficulty, a self-organizing map that is 
trained to model the statistical distribution of the signals of interest is 
introduced in the similarity index evaluation procedure. The SOM based 
technique is equally accurate, but computationally less expensive compared to 
the conventional measure. These results are demonstrated by comparing the 
original and SOM-based similarity index approaches on synthetic chaotic 
signal and real EEG signal mixtures. 
 
 
INTRODUCTION 

 
Understanding the interrelations between multiple time-series has numerous 

applications in signal processing and engineering. A key aspect of understanding 
how a system works is, understanding how information at its different nodes is 
coupled and how it propagates through these nodes. In particular, quantifying the 
interactions between the signals at various channels of an EEG recording across 
the temporal lobe could potentially help us predict epileptic seizures. One can also 
trace the epileptic foci by understanding various coupling characteristics between 
EEG traces at different time-instances. Various linear and nonlinear techniques 
have been developed to quantify the degree of synchronization. Cross-correlation 
analysis is one of the earliest and most relied-on linear techniques in this effort. 
Directed coherence, direct transfer functions (DTF) and partial directed coherence 
(PDC) [1-3] are amongst the other methods that have been lately proposed and 
researched on. However, these approaches describe only the linear structural 
inference between the stochastic processes. Linearity assumptions restrict the 
applicability, because most of the real world signals, including EEG, are generated 
from non-linear interactions between complex systems.  

Nonlinear dependencies between multiple signals have also been studied in the 
last two decades, but with limited success. Popular methods utilize concepts based 



on generalized mutual information [4], and instantaneous phase measures using 
Hilbert transforms [5,6] and Wavelet transforms [7]. The difficulty with these 
methods has been the need to use very long data series and computational 
complexity due to the handling of this data. Additional requirements, such as 
narrow-band signals, also hindered the general applicability of some methods. 
Eckmann et al. [8] proposed the method of recurrence plots (RPs) that represents 
the recurrence of states in the phase-space trajectory of a chaotic signal. Since 
chaotic systems are non-linear in nature, this method has been fairly successful in 
detecting bifurcations and non-stationarities in time sequences [9]. Cross-
recurrence plot (CRP) is an extension of the RP idea to multi-dimensional time 
signals [10]. The CRP has found use in describing the time-dependency between 
multiple time-series recorded from multiple locations. However, the lack of 
quantitative information and the computational complexity makes it tedious for 
analyzing large sets of data. One of the common drawbacks of most of the 
measures is that they fail to indicate the direction of information flow (or 
influence). In a closed-system, it is reasonable to expect that there exist linear or 
nonlinear dependencies between the signals acquired from measurements at 
various points. In some engineering applications, such as the prediction of 
epileptic seizures, it is essential to identify the information flow direction between 
these multiple nodes in the system. 

Recently, Arnhold et al. [11] introduced the similarity–index technique (SI) to 
measure such asymmetric dependencies between time-sequences. Conceptually, 
this method relies on the assumption that if there is a dependency between two 
signals, the neighboring points in time will also be neighboring points in state 
space. Since this requires searching for the nearest neighbors in the state space 
(formed by embedding) for large data sets, the computational complexity becomes 
unmanageable. In this paper, we propose a self-organizing map (SOM) based 
improvement to this method to reduce computational complexity, while 
maintaining accuracy. This is achieved by mapping the embedded data from 
signals onto a quantized output space through a SOM specialized on these signals, 
and utilizing the activation of SOM neurons to infer about the influence directions 
between the signals, in a manner similar to the original SI technique. 

 
 
THE SIMILARITY INDEX TECHNIQUE 

 
In this section, brief description of the original SI measure is provided. Given 

two signals, X and Y, the similarity index, which is defined as 
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quantifies the average influence of Y on X. Here,  measures the average 
Euclidean distance between the sample-vector x

)(XR n

n, which is constructed by 
embedding the original time series in a delay vector, and its k nearest neighbors in 
a neighborhood of radius ε, at time instant n. Similarly, the quantity  )|( YXR n



measures the average Euclidean distance between xn and the sample-vectors of X 
whose time indices correspond to the time indices of the nearest neighbors of yn. 
 By definition, 0 , and the ratio in (1) is always in [0,1]. 
As a consequence, 
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 implies X is completely dependent on Y. This 
suggests that recurrence of a state in Y implies a recurrence in X [12]. On the same 
principles,  implies complete independence between X and Y. 
Similarly, it is possible to quantify the average dependence of Y on X by 
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Comparing  and , we can determine which signal is more 
dependent on the other. By design, the similarity index can identify nonlinear 
dependencies.  
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The difficulty with this approach is that at every time instant, we must search for 
the k nearest neighbors of the current embedded signal vectors among all N sample 
vectors; this process requires O(N2) operations. In addition, the measure depends 
heavily on the free parameters, namely, the number of nearest neighbors and the 
neighborhood size ε. The neighborhood size ε needs to be adjusted every time the 
dynamic range of the windowed data changes. 

 
 

SOM-BASED SIMILARITY INDEX 
 
The SOM-based SI algorithm is designed to reduce the computational 

complexity of the SI technique. The central idea is to create a statistically 
quantized representation of the dynamical system using a SOM [13,14]. For best 
generalization, the map needs to be trained to represent all possible states of the 
system (or at least with as much variation as possible). As an example, if we were 
to measure the dependencies between EEG signals recorded from different regions 
of the brain, it is necessary to create a SOM that represents the dynamics of signals 
collected from all channels. The SOM can then be used as a prototype to represent 
any signal recorded from any spatial location on the brain, assuming that the 
neurons of the SOM have specialized in the dynamics from different regions. 

One of the salient features of the SOM is topology preservation [13,14]; i.e., the 
neighboring neurons in the feature space correspond to neighboring states in the 
input data. In the application of SOM modeling to the similarity index concept, the 
topology preserving quality of the SOM enables us to identify neighboring states 
of the signals by neighboring neurons in the SOM. 

Assume that X and Y are two time series generated by a system, which are 
embedded into two vector signals in time using delays. Define the activation 
region of a neuron in the SOM as the set of all input vectors (the embedded signal 
vectors) for which the neuron is the winner based on some distance metric 
(Euclidean in most cases). Let Xn be the set of time indices of input vectors xj that 
are in the activation region of the winner neuron corresponding to the input vector 



xn at time n. Similarly define the set Yn. Then the procedure to estimate the 
directed similarity indices between X and Y using a SOM is as follows: 
1. Train a SOM using embedded vectors from both X and Y as the input. 
2. At time n, find W , the winner neuron for vector xx

n n, and find W , the 
winner neuron for vector y

y
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n. 
3. Determine the sets Xn and Yn for W  and W , respectively. x
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the number of elements of Yn. 
6. Find R  as the average of  over all n. Find  as the 

average of  over all n. 
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7. Compute the normalized similarity index as 
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By construction, large values of  and  imply weaker 
dependency or no dependency. The normalized similarity index χ, on the other 
hand can point out directed influences between the two signals. Specifically, 
positive values of χ indicate an influence of Y on X, while negative values indicate 
the opposite.  
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Higher the magnitude of χ indicates a stronger coupling of the signals in the 
direction indicated by the sign. When χ is close to zero, an ambiguity occurs, since 
the two signals could be independent or coupled to each other equally in both 
directions. This ambiguity can be resolved by observing the individual values of 

 and . )|( YXR )|( XYR
The computational savings of the SOM approach is an immediate consequence 

of the quantization of the input (signal) vector space. The search for nearest 
neighbors will involve O(Nm) operations as opposed to the O(N2) of the original 
algorithm, where N is the number of samples and m is the number of neurons in 
the SOM (m<<N by design). 
 
 
SIMULATION RESULTS 
 

In this section, we demonstrate the viability of the SOM-based similarity index 
approach in determining couplings and influence directions between synthetic and 



 
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 
Figure 1. Phase-space trajectories of the Rossler-Lorenz system for various
coupling strengths a) Rossler b) Lorenz (C=0) c) Lorenz (C=1) d) Lorenz
(C=3) e) Lorenz (C=5) f) Lorenz (C=8). The SOM weights (dots) for each
signal are superimposed on the trajectory. 

real signals. One case study considers a coupled Rossler-Lorenz system (as 
described in [12]), and the other considers real EEG signals. 
 
Rossler-Lorenz signals: The same Rossler-Lorenz example used by Quiroga et 
al. [11] is used here. A synthetic nonlinear dependency between a Rossler (X ) and 
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ly on embedded data (using an embedding delay of 0.3 time-units 
dimension of 4) from these two signals. The phase-space dynamics 
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 an 8x8 rectangular grid, and is trained on a set of 4000 samples 
n neighborhood function for 1000 iterations. The neighborhood 
 deviation of the Gaussian neighborhood function) is exponentially 
g from an initial value of 6 with a time constant of 100. The step 
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M-based similarity index approach, the normalized indices χ are 
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Figure 5. The phase-space trajectory of the training EEG signal (dimensions X
and X) and the weights of the trained EEG-SOM (circles). 

synthetic example, where a separate SOM was used for each signal. The SOM, 
however, must be trained using data that represents all possible psycho-
physiological states that the EEG signals might exhibit. In the case of an epilepsy 
patient, these include pre-ictal, itcal and post-ictal states, in addition to the inter-
ictal state. 

In this example, EEG signals collected from two different patients at different 
locations (labeled X and Y ) are used. A synthetic nonlinear functional relationship 
with influence direction from X to V, W, and Z is created according to (5). Care is 
taken in choosing these functions to make sure that the synthetic EEG mixtures in 
(5) exhibit the characteristics of real EEG signals. The signals are shown in fig. 4. 
This is achieved by verifying that the time structure and the power spectra of these 
signals are consistent with that of an EEG signal. 
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Here, x(n) and y(n) denote the original time sequences and v(n), w(n), and z(n) 
denote the synthetic signals driven by the two original signals. In addition, r(n) is a 
zero-mean unit-variance Gaussian noise term. The synthetic EEG signals are 
shown in Fig. 4 and the flow diagram representing the relationships in (5) is 
depicted in Fig. 5. 

A 10x10 rectangular SOM (referred to as EEG-SOM) is trained using 3000 
samples of embedded EEG data (with an embedding dimension of 10 and 
embedding delay of 30ms). The phase-space trajectory of the training data and the 
weights of the trained SOM are shown in Fig. 6. The normal EEG state is 
represented by the smaller amplitude activity (the dominant portion of the training 
data), whereas the larger amplitudes correspond to the spiky, sharp, and slow wave 
activity formed during the ictal state of the brain, or to artifacts formed due to 
muscle movements, etc. After training the SOM, the normalized similarity index 
between the original signals X and Y is evaluated to verify that these EEG signals 
are indeed independent. 



The dependencies between X, V, W, and Z are also evaluated using the SOM to 
calculate the normalized similarity index. The results are summarized in Table 1, 
where both the coupling strength and the estimated similarity index between pairs 
of signals are presented. 

 
Coupling Strength χ )|()|(),( XYSYXSYXS −=  

cxv = 1
 

-0.1668 VX >−  -0.1112 VX >−  
cxz = 2

 
-0.0756 ZX >−  -0.0612 ZX >−  

    cvz = -0.8
 

0.0901 VZ >−  0.0572 VZ >−  
cvw = 1

 
-0.213 WV >−  -0.0336 WV >−  

  czw = 0.3
 

-0.1225 WZ >−  -0.0644 WZ >−  
Table 1. Coupling strength between pairs of signals, the normalized similarity 
index and the original Similarity index between them. 
 

The results obtained from the SOM-based SI measure and the original SI 
measure (in Table 1) is in perfect agreement. We conclude that X influences V and 
Z, V influences Z and W, and W influences Z. Comparing these with the flow 
diagram in Fig. 5, it is seen that all directional couplings are consistent with the 
true construction except for the relationship between V and Z. Possibly, this 
discrepancy is due to some cancellations between the couplings from X and from 
V. Also, we can see that V is exclusively constructed from the X and the Y 
components and does not have any independent oscillations of its own, unlike W. 

These results indicate that the similarity index approach might not produce 
results that are consistent with what one would expect from the equations (if these 
are known) when the coupling diagram has closed loops. 
 
 
CONCLUSIONS 
 

The similarity index measure determines directional dependencies between two 
signals using the basic assumption that two related signals will have similar 
recurrences of the embedded state vector. This method has high computational 
complexity in terms of the number of samples, since a search for nearest neighbors 
must be performed in the phase-space of the signal. 
 In this paper, we proposed a SOM-based approach to estimate the similarity 
index. This approach reduces the computational complexity drastically by 
exploiting the accurate quantization properties of the SOM in representing the 
dynamics of the signal in the phase space. Another advantage of the SOM-based 
approach is that the difficulties that the original similarity index approach 
encounters in handling nonstationary data (such as the necessity to tweak 
parameters) are eliminated by training the SOM using samples from various 
regimes of the nonstationary system.  
 On the other hand, the SOM-based approach might suffer from inaccuracy if the 
quantization is severe. Therefore, the size of the SOM could be decided by a trade-
off between representation accuracy and computational complexity. Future studies 
will address the issue of scenario-dependent SOM size selection, as well as 



determining a suitable statistical normalization for the SOM-based method that 
will result in inferences with confidence measures. In addition, the algorithm must 
be modified such that it takes the possibility of having closed loops to produce 
results that are more consistent with what one would expect from the dynamical 
equations of the system. 
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