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Abstract- Mean Squared Error (MSE) has been the most
widely used tool to solve the linear filter estimation or
system identification problem. However, MSE gives
biased results when the input signals are noisy. This paper
presents a novel Error Whitening Criterion (EWC) to
tackle the problem of linear system identification in the
presence of additive white disturbances. We will motivate
the theory behind the new criterion and derive an online
stochastic gradient algorithm based on EWC.
Convergence proof of the stochastic gradient algorithm is
derived making mild assumptions. Simulation results
show the effectiveness of this criterion. We will compare
its performance with MSE as well as the powerful Total-
Least Squares method.

1. INTRODUCTION

It was been a widely acknowledged fact that the Mean
Squared Error (MSE) criterion is optimal for linear filter
estimation when there are no noisy perturbations on the data
[1]. In adaptive filter theory, the Wiener solution for the MSE
criterion is used to derive recursive algorithms like RLS and
the more popular stochastic gradient based LMS algorithm
[1]. An important property of the Wiener solution is that if
the adaptive filter is sufficiently long enough, then the
prediction error signal for stationary data is white [1]. This
very nice property is true only when the input data is noise-
free. It has been long recognized that the MSE-based filter
optimization approaches are unable to produce the optimal
weights associated with the noise free data due to the biasing
of the input covariance matrix by the additive noise [2]. For
many real-world applications, the “noise-free” assumption is
easily violated and using MSE-based methods for parameter
estimation will result in severe degradation in performance.
Researchers have proposed several techniques to combat and
suppress the bias in MSE-based methods. For instance, the
subspace methods coupled with the Wiener solution can
result in superior filter estimates. However, finding the right
subspace dimension and the optimal subspace projections is a
non-trivial problem. Moreover, subspace based Wiener
filtering methods can only reduce the bias; they can never
remove the bias completely. An important statistical tool
called Total Least-Squares (TLS) [3] can be utilized to
eliminate this bias completely. The major stumbling block for
the TLS that severely limits its practicability is the
requirement that the variances of the noisy perturbations on

the input and desired signals be identical [2], [4]. In this
paper, we will present a completely different approach that
would partially whiten the error sequence at the output of an
adaptive filter even in the presence of noisy inputs. A new
criterion is formulated that enforces zero autocorrelation of
the error signal beyond a certain lag; hence the name Error
Whitening Criterion (EWC). In the next section, we will
motivate the theory of EWC and state some of its interesting
properties

II. ERROR WHITENING CRITERION THEORY

The classical Wiener solution tries to minimize the zero-lag
autocorrelation of the error, i.e., E(e;). In the presence of

additive white noise, the zero-lag autocorrelation is always
biased by the noise power. Instead, we propose to analyze the
error autocorrelation at a non-zero lag. Suppose noisy

training data  pair (ﬁk,a?k) is  provided, where
%, eRV=x,+v, and d, eR' =d, +u, with x, as the
noise-free input vector at discrete time index k, v,, the
additive white noise vector on the input, d, being the noise-
free desired signal and u, being the additive white noise

added to the desired signal. We further assume that the noises
v, and u, are uncorrelated with the data pair and also

uncorrelated with each other. Let the weight vector (filter)
that generated the noise-free data pair (x,,d,) be w,, of

dimension N. Without loss of generality, we will assume that
the length of w, the estimated weight vector is N. Since

T - I T T
d, =x,w;,theerroris e, =x, (W, —w)+u, —v, w.Error
autocorrelation at some arbitrary lag L is given by,

o,(L) =[w, —w]" E[x,x,_,][w, —w]+W E[v,v] /]w (1)

From (1), it is obvious that if L> N, where N is the length
of the true filter w,, E[v,v. ,]=0. Assuming that the

matrix E[x,x; ,]exists and is full rank, p;(L) = 0 only when
w = w, . Therefore, if we make the error autocorrelation at

any lag L > N zero, then the estimated weight vector will be
exactly equal to the true weight vector. This is the motivation
behind the EWC, which partially whitens the error signal by



making p,(L) =0 for L>N. Since the goal is to make
p;(L)=0, a suitable cost function to derive a stochastic

gradient algorithm is

pé(L)| . Using Bluestein’s identity [5],

we can write the product é.¢, ; as,

1 ., . A
€6 = 5[913 + elf—L - (e _ek—L)Q] (2

Taking the expectations on both sides and recognizing the
fact that E(&}) = E(é;_,) , we get,

E(ékék—L):E(éZ)_O'SE(ék _ék—L)z (3)

For convenience, we define ¢, =(¢,—¢,_,) and use a
constant S instead of —0.5. We can rewrite (3) as,

E(68,.,)=E@)+PEE) 4
The cost function for the EWC can now be formally stated as,

JW) =|E@) + BEE)

)

The form in (5) is appealing because, it includes the MSE as
a special case when £ =0. With f=-0.5, the above cost

function becomes |pé(L)| which when minimized would

result in the unbiased estimate of the true weight vector.
Another interesting result is that the sensitivity of p,(L),

given by, 0Ops(L)/ow =-2[w, —w]E[x;x, ,] is zero if
(w; —w)=0. Thus, if (w, —w) is not in the null space of
E[x;x; ;]

(w, —w)=0 makes

or if E[x,x; ,] is full rank, then only
p;(L)y=0 and Op,(L)/ow=0
simultaneously. This property has a useful implication.
Consider any cost function of the form J(w)”, p > 0. Then

the performance surface is not necessarily quadratic and the
stationary points of this new cost are given by J(w)=0 or
dJ(w)/ow =0 . Using the above property, we immediately
see that both J(w)=0 and oJ(w)/0w =0 yield the same
solution. Optimization on (5) without the absolute value
operator is impossible using a constant sign gradient
algorithm, as the stationary point can then be a global
maximum, minimum or a saddle point. The stochastic
instantaneous gradient of the EWC cost function in (5) is,

aJ(w)/ ow = 2sign(é} + S )(é.x, + fé,x,) (6)

where, é, =(é,—-é,,) and %, =(%,-%,,) as defined
before. The stationary point is a global minimum and using
gradient descent, we can write the EWC-LMS algorithm as,

Wi = Wi+ nsign(ézf + ﬂé:)(ékik + fex,) (7

where, 77 >0 is a small step-size parameter. Note that when
£ =0, (7) reduces to the renowned LMS algorithm [6]. We
are specifically interested in using (7) with £ =-0.5. In the

next section, we will present the convergence analysis of (7)
and derive some useful results.

III. CONVERGENCE ANALYSIS

Theorem I: In the noise-free case, EWC-LMS given in (7)
converges to the stationary point w. = w, provided that the

step size satisfies the following inequality at every update.

2e; + /|

——Vk )
"ekxk + ﬁekxk”

O<np<

Proof. From the arguments presented in the previous section
and owing to the quadratic nature of the EWC performance
surface, it is clear that the EWC-LMS algorithm in (7) has a
single stationary point (global minimum) w,.=w,. The
formal proof is trivial and is omitted here. Consider the
weight error vector defined as g, = w. —w,. Subtracting

both sides of (7))

g, =&, —nsign(e; + fe;)(ex, + fé,x,). Taking the norm

from W, we get

of this error vector we get,
2 2 . 2 O\ T ..
||8k+]|| = ”‘(:k" = 2nsign(e; + fe; e, (e.X, + feX,)
o2 .
+ 772||ekxk + ﬁekxk" . In case of noise-free data, £, x, = e,

and g,x, = ¢, . Using these two equations we get,

= ||8k||2 -2 & + f3&; | +772||9ka + ﬂéki‘k||2 ©)

||8k+l

By allowing the error vector norm to decay asymptotically by

making ||.*:,€+1||2 < ||sk * | we obtain the bound in (8). The error

vector will eventually converge to zero, i.e., %im"sk ||2 -0,
—>00
which implies that }im W, > W.=w;. [
—0
Observe that when f = 0, the upper bound on the step-size

in (8) reduces to 0 <7 < 2/||xk||2, which is nothing but the

step-size bound for LMS in the case of deterministic signals.



Theorem II: In the noisy data case, EWC-LMS given in (7)
with f =-0.5 converges to the stationary point w. =w, in
the mean provided that the step size is bound by the
inequality

2/E@? - 0.56%)

0<n< JZ (10)

Elle,x, —0.5¢,x,

Proof. Again, it is clear that the only stationary point of (7)
with f=-0.5 is w.=w even in the presence of noise

where w, is the true weight vector that generated the noise-
free data pair (x,,d,). Following the same steps as in the

proof of the previous theorem, the dynamics of the error
vector norm can be determined by the difference equation,

||8k+]||2 = ||8k||2 —2nsign(é; + /Bélf )Sz(ékﬁk + ﬂék;(k)
2

+’72 X, +13ék§k (11)

Apply the expectation operator on both sides of (11) and let
E"3k+1"2 < E"sk ||2 as in the previous case. With further

simplifications and assuming that 77 > 0, we get

A ~ |12 A A
%E ok, + x| < Elel (6,3, + fo,x,) (12)
Using Jensen’s inequality for convex functions,
E|X | > |E (X )| , we can deduce an upper bound for the step-
size as,
L& 6,5, + o, )
O<np<2 — (13)
Elex, + fex,

Since we switched the order of expectation operator and
absolute value function, we can further simplify the bound in

(13). The evaluation of the terms E(¢'é,%,) and E(g/é,x,)

are tedious and is omitted here. It can be shown that,

E(glex,)=¢ Reg, —€. Vw, 14)
E(e7é,x,) =€/ 2R -R,)g, —2e/Vw,
where, R = E[x,x; |, R, = E[x;x; , +X, X, ],V = E[v,v;].
Since we assumed that the noise is white, V = o', where

o represents the variance of the input noise. Now, with

f=-05,

A n 2 2 1
E(gléx,)—0.5E(glé,x,) :Ea,fRLsk (15)
Using g, =w.-w, =w, —w, and d, = x,w,, (15) can be
further reduced to

E(e76,%,) - 0.5E(e]é,x,) = E(e,e,,) = E(&2 —0.5¢2)  (16)

Substituting the numerator of (13) with the above result, we
immediately get the upper bound in (10). If the step-size

< E"sk"2 and the

error vector norm asymptotically converges to zero in the

chosen satisfies this condition, then E||sk+1

mean. Therefore, }im E ||£ . ||2 -0 and
hres

/limE(wk) > W, =w;.[]
K —>»00

We would like to mention that the upper bound on step-size
given by (10) is computable using only the data samples. For
the LMS algorithm ( # = 0), if the input and desired signals

are noisy, the upper bound on the step-size is dependent on
the true weight vector as well as on the variance of the noise,
which makes it impractical.

We can deduce a normalized EWC-LMS algorithm from
this result in (10) that would give a constant data independent
upper bound on the step-size. The normalized EWC-LMS
algorithm can be derived using the principle of minimum
norm updates [1] and will be provided in a later paper.

Since the EWC-LMS algorithm with S = —0.5 minimizes

pé(L)|, the effect of finite step-sizes on the steady state

pé(L)| would be a good performance index. This is
analogous to the excess-MSE in LMS [1].

Theorem III: With £ =-0.5, the steady state excess error

autocorrelation at lag L> N, i.e.,

P; (L)| is always bound
by,

pe(L)|< gE(éfo TR+ V)]+ 27002 +]w, W,

Tr(V)]

(17)
where R =E[x,x;], and V = E[v,v;] and Tr(e) denotes
the matrix trace. The noise variances in the input and desired
signals are represented by o> and & respectively.

Proof. Following the footsteps of the previous proofs, we
start with the error dynamics equation given by (11). Since
we are interested in the dynamics near convergence (steady
state) we let &k — o . Applying the expectation operator to
both sides of (11) will give,



Ele.|” = Ele|| - 2nELsign(é} - 0.56)e] (é,%, —0.5¢,x,)]

i (18)

+ an”ékik ~0.56,%,

Expanding the terms £/¢,%, , €7¢,x, and simplifying we get,

2

Ele,|” = Ele.] +n*E|e.&, —0.5¢,x,

+2nE[sign(é] — 0.55;)[wf(vkvz -0.5v,vi)w, 1]
+2nE[sign(é} — O.Sé,f)(u,f —0.5u;)] - 2nE

2 ~2
e; —0.5¢;

(19)

Letting E"s,m"2 = E||£,c||2 as k — oo, we see that,

~ A~ 12
E|(& -0.5¢}) e.x, —0.5¢,x,| +nx

2

Elsign(é? —0.5¢2)[w’ (v,vl —0.5v,v])w, +u> — o.sa,f]]
(20)

(62 —0.56%) , and

> ‘E(é,f ~0.582)

By Jensen’s inequality, E

therefore we have,

A~ |12
e, X, —0.5¢,x,|| +nx

n
p(L)| < S E

E[sign(éj —0.5¢2) W (v,vE = 0.5V, v )w, +u’ — o.saj]]
21)

Note that, we used the relation p;(L) =‘E(ék2 —0.555) in

the above equation. The first term on the RHS of (21) can be

easily evaluated by invoking the assumption that ||§(k||2 and

é; are uncorrelated in steady state as,

A A 12
Ele.x, - O.Sék)kk” = E@)[Tr(R)+ Tr(V)]

(22)

The above assumption is commonly used in computing the
steady state excess-MSE for stochastic LMS algorithm [7].
Importantly, this assumption is less restrictive and more
natural when compared to the independence theory that was
frequently used in the past [1]. The second term in RHS of
(21) is involved and has no closed form expression even with
Gaussianity assumptions that are typically made in the
analysis of sign-LMS algorithm [7]. Even the validity of
Gaussianity assumption is questionable as discussed by
Eweda [8] who proposed additional, reasonable constraints
on the noise probability density function to overcome the
Gaussianity and independence assumptions [8] that lead to a
more generic misadjustment upper bound for the sign-LMS
algorithm. Nevertheless, the analyses of stochastic algorithms
(with or without sign) in the existing literature explicitly

assume that the input signal is “noise-free” that simplifies the
problem to a great extent. In this paper we particularly deal
with input noise and refrain from making any assumptions in
deriving an upper bound for excess error autocorrelation.
With this closing argument, we proceed by rewriting (21)

using the identity £ [sign(a)b] <E |b| as,

P E %E(é,f)[Tr(R) +Tr(V)]+7
(23)

E|[w! (v, v] = 0.5%, 3w, +u; —0.5i7]

We know that |a + b| < |a| + |b| and E(u,u,_;)=0. Therefore,

E|[uk2 - 0.5u§]| <E@})+05E@}) =20 24)
Similarly,
E|W*T(vkv£ —O.Sifk\'ff)wk| < E|wkavfwk +

(25)

Te oT
0.5E|w*vkvkwk|
. . .o . T T Te =T
Since the individual terms w,v,v,w, and w,v,v,w, are
not necessarily positive we use the Cauchy-Schwartz

inequality to continue further.

2
Vi "

T T
WV, V,W, < ||wk||||w*
. (26)
‘.’k"

wiv, viw, < ||wk||||w*
We know that E[v,v! ,]is 0 for L > N . Therefore,

E|W*Tvkv,fwk|+0.5E|wf\'fk\'/£wk| < 2w,

w, [T(V) 27)

Using (24) and (27) in (23), and letting £ — o , we see that,

pL| < T E@ITr R+ V)I+ 270 +[w. [Iw.

Tr(V)]

(28)
The term E(é2) represents the residual MSE and is given by,

A 2 2
E@)=¢Re, +o. +w. Vw, < ||£00|| Ay + 0L+ ||w00|| ol

where, A . is the maximum eigenvalue of R. [

X
It is important to observe that by reducing the step-size,
one can arbitrarily reduce the steady state excess error

autocorrelation at lag L > N . We have confirmed this fact by
extensive simulations and the results have been reported in

[9].



IV. CASE STUDY

System Identification using EWC-LMS: We will now
verify the noise rejecting capability of EWC-LMS algorithm
when £ =-0.5 in a system identification problem. A noise-

free sufficiently colored input signal of 50000 samples is
passed through an unknown system to form the noise-free
desired signal. Uncorrelated white Gaussian noise is added to
the input signal. Clean desired signal is used, as the noise in
the desired averages out automatically in stochastic LMS type
algorithms. The input SNR was set at —10dB, 0dB and 10dB.
We chose the order of the unknown system to be 4, 8 and 12
and performed 100 Monte Carlo runs calculating the error
vector norm in each case using,

] (29)

error norm = 2010g10[||wT -W,

where, w, is the solution given by EWC-LMS after one
complete presentation of the training data and w, represents

the unknown system. We ran the regular LMS algorithm as
well as the numerical TLS method (batch type). The step-
sizes for both LMS and EWC-LMS algorithms were varied to
get the best possible results in terms of the error vector norm
given by (29). Fig. 1 shows the histograms of the error vector
norms for all three methods. The inset plots in Fig. 1 show
the summary of the histograms for each method. EWC-LMS
performs significantly better than LMS at low SNR values (-
10dB and 0dB), while performances are on par for SNR
greater than 10dB. Batch type numerical TLS method gives
best results when the SNR is high. As we have stated before,
TLS suffers if the noise variances in input and desired are not
the same.

V. CONCLUSIONS

In this paper, we proposed a new criterion called the Error
Whitening Criterion (EWC), which includes MSE as a
special case. MSE and Total Least Squares (TLS) methods
give highly biased parameter estimates if additive white noise
with arbitrary variance is present in the input. However,
EWC can be used to accurately estimate the underlying
parameters of a linear system in the presence of additive
white noise. We discussed some interesting properties of this
new criterion, and then proposed an on-line, stochastic
gradient algorithm with O(N)complexity. Convergence of
the stochastic gradient algorithm was derived making
minimal assumptions and upper bounds on the step-size and
the steady state excess error autocorrelation were determined.
Extensive Monte-Carlo simulations were carried out to show
the superiority of the new criterion in a FIR system
identification problem. Currently, further research is in
progress to extend the criterion to handle colored noise and
non-linear system identification.
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Figure 1- Histogram plots showing the error vector norm for EWC-LMS, LMS algorithms and the numerical TLS solution.
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