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Abstract- Mean Squared Error (MSE) has been the most 
widely used tool to solve the linear filter estimation or 
system identification problem. However, MSE gives 
biased results when the input signals are noisy. This paper 
presents a novel Error Whitening Criterion (EWC) to 
tackle the problem of linear system identification in the 
presence of additive white disturbances. We will motivate 
the theory behind the new criterion and derive an online 
stochastic gradient algorithm based on EWC. 
Convergence proof of the stochastic gradient algorithm is 
derived making mild assumptions. Simulation results 
show the effectiveness of this criterion. We will compare 
its performance with MSE as well as the powerful Total-
Least Squares method. 
 

I. INTRODUCTION 

 
It was been a widely acknowledged fact that the Mean 

Squared Error (MSE) criterion is optimal for linear filter 
estimation when there are no noisy perturbations on the data 
[1]. In adaptive filter theory, the Wiener solution for the MSE 
criterion is used to derive recursive algorithms like RLS and 
the more popular stochastic gradient based LMS algorithm 
[1]. An important property of the Wiener solution is that if 
the adaptive filter is sufficiently long enough, then the 
prediction error signal for stationary data is white [1]. This 
very nice property is true only when the input data is noise-
free. It has been long recognized that the MSE-based filter 
optimization approaches are unable to produce the optimal 
weights associated with the noise free data due to the biasing 
of the input covariance matrix by the additive noise [2]. For 
many real-world applications, the “noise-free” assumption is 
easily violated and using MSE-based methods for parameter 
estimation will result in severe degradation in performance. 
Researchers have proposed several techniques to combat and 
suppress the bias in MSE-based methods. For instance, the 
subspace methods coupled with the Wiener solution can 
result in superior filter estimates. However, finding the right 
subspace dimension and the optimal subspace projections is a 
non-trivial problem. Moreover, subspace based Wiener 
filtering methods can only reduce the bias; they can never 
remove the bias completely. An important statistical tool 
called Total Least-Squares (TLS) [3] can be utilized to 
eliminate this bias completely. The major stumbling block for 
the TLS that severely limits its practicability is the 
requirement that the variances of the noisy perturbations on 

the input and desired signals be identical [2], [4]. In this 
paper, we will present a completely different approach that 
would partially whiten the error sequence at the output of an 
adaptive filter even in the presence of noisy inputs. A new 
criterion is formulated that enforces zero autocorrelation of 
the error signal beyond a certain lag; hence the name Error 
Whitening Criterion (EWC). In the next section, we will 
motivate the theory of EWC and state some of its interesting 
properties  
 

II. ERROR WHITENING CRITERION THEORY 
 

The classical Wiener solution tries to minimize the zero-lag 
autocorrelation of the error, i.e., . In the presence of 
additive white noise, the zero-lag autocorrelation is always 
biased by the noise power. Instead, we propose to analyze the 
error autocorrelation at a non-zero lag. Suppose noisy 
training data pair  is provided, where 

 and  with  as the 
noise-free input vector at discrete time index k, , the 
additive white noise vector on the input,  being the noise-
free desired signal and  being the additive white noise 
added to the desired signal. We further assume that the noises 

 and u  are uncorrelated with the data pair and also 
uncorrelated with each other. Let the weight vector (filter) 
that generated the noise-free data pair (  be , of 
dimension N. Without loss of generality, we will assume that 
the length of , the estimated weight vector is N. Since 

, the error is . Error 
autocorrelation at some arbitrary lag 
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From (1), it is obvious that if , where  is the length 
of the true filter , . Assuming that the 

matrix exists and is full rank,
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Tww = . Therefore, if we make the error autocorrelation at 
any lag  zero, then the estimated weight vector will be 
exactly equal to the true weight vector. This is the motivation 
behind the EWC, which partially whitens the error signal by 

NL ≥



making 0)(ˆ =Leρ  for . Since the goal is to make NL ≥
0=)(ˆ Leρ , a suitable cost function to derive a stochastic 

gradient algorithm is )(ˆ Leρ
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Taking the expectations on both sides and recognizing the 
fact that , we get, ˆ( 2

Lke −
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For convenience, we define  and use a 
constant 

)ˆˆ(ˆ
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 instead of –0.5.  We can rewrite (3) as, 
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The cost function for the EWC can now be formally stated as, 
 

)ˆ()ˆ 22
kk eEe &β+                (5) 

 
The form in (5) is appealing because, it includes the MSE as 
a special case when β . With 5.0−=β , the above cost 
function becomes (êρ  which when minimized would 
result in the unbiased estimate of the true weight vector. 
Another interesting result is that the sensitivity of )(ˆ Leρ , 

given by,  is zero if 
. Thus, if  is not in the null space of 

 or if  is full rank, then only 
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simultaneously. This property has a useful implication. 
Consider any cost function of the form . Then 
the performance surface is not necessarily quadratic and the 
stationary points of this new cost are given by 

0
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( =wJ  or 
. Using the above property, we immediately 

see that both  and  yield the same 
solution. Optimization on (5) without the absolute value 
operator is impossible using a constant sign gradient 
algorithm, as the stationary point can then be a global 
maximum, minimum or a saddle point. The stochastic 
instantaneous gradient of the EWC cost function in (5) is, 
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where,  and  as defined 
before. The stationary point is a global minimum and using 
gradient descent, we can write the EWC-LMS algorithm as, 
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where, 0>η  is a small step-size parameter. Note that when 

0=β , (7) reduces to the renowned LMS algorithm [6]. We 
are specifically interested in using (7) with 5.0−=β . In the 
next section, we will present the convergence analysis of (7) 
and derive some useful results.  
 

III. CONVERGENCE ANALYSIS 
 

Theorem I: In the noise-free case, EWC-LMS given in (7) 
converges to the stationary point  provided that the 
step size satisfies the following inequality at every update. 
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Proof. From the arguments presented in the previous section 
and owing to the quadratic nature of the EWC performance 
surface, it is clear that the EWC-LMS algorithm in (7) has a 
single stationary point (global minimum) Tww =*

kw

. The 
formal proof is trivial and is omitted here. Consider the 
weight error vector defined as ε . Subtracting 
both sides of (7) from , we get 

. Taking the norm 
of this error vector we get, 
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By allowing the error vector norm to decay asymptotically by 
making 22

1 kk εε <+ , we obtain the bound in (8). The error 

vector will eventually converge to zero, i.e., 0lim 2
→

∞→ kk
ε , 

which implies that . � Tkk
www =→

∞→ *lim

Observe that when 0=β , the upper bound on the step-size 

in (8) reduces to 2/ kx2<< η0 , which is nothing but the 
step-size bound for LMS in the case of deterministic signals. 
 



Theorem II: In the noisy data case, EWC-LMS given in (7) 
with 5.0−=β  converges to the stationary point w Tw=*  in 
the mean provided that the step size is bound by the 
inequality 
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Proof. Again, it is clear that the only stationary point of (7) 
with 5.0−=β  is even in the presence of noise 
where  is the true weight vector that generated the noise-
free data pair . Following the same steps as in the 
proof of the previous theorem, the dynamics of the error 
vector norm can be determined by the difference equation, 
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Apply the expectation operator on both sides of (11) and let 

22
1 kk EE εε <+ as in the previous case. With further 

simplifications and assuming that 0>η , we get 
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Using Jensen’s inequality for convex functions, 

)(XEXE ≥ , we can deduce an upper bound for the step-
size as, 
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Since we switched the order of expectation operator and 
absolute value function, we can further simplify the bound in 
(13). The evaluation of the terms  and  
are tedious and is omitted here. It can be shown that,  
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Since we assumed that the noise is white, , where 

 represents the variance of the input noise. Now, with 
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Using kTkk wwwwε −=−= *  and , (15) can be 
further reduced to  
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Substituting the numerator of (13) with the above result, we 
immediately get the upper bound in (10). If the step-size 
chosen satisfies this condition, then 22

1 kk EE εε <+ and the 
error vector norm asymptotically converges to zero in the 
mean. Therefore, 02

→
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We would like to mention that the upper bound on step-size 
given by (10) is computable using only the data samples. For 
the LMS algorithm ( 0=β ), if the input and desired signals 
are noisy, the upper bound on the step-size is dependent on 
the true weight vector as well as on the variance of the noise, 
which makes it impractical.  

We can deduce a normalized EWC-LMS algorithm from 
this result in (10) that would give a constant data independent 
upper bound on the step-size. The normalized EWC-LMS 
algorithm can be derived using the principle of minimum 
norm updates [1] and will be provided in a later paper.  

Since the EWC-LMS algorithm with 5.0−=β  minimizes 
)(ˆ Leρ , the effect of finite step-sizes on the steady state 

)(ˆ Leρ  would be a good performance index. This is 
analogous to the excess-MSE in LMS [1]. 
 
Theorem III: With 5.0−=β , the steady state excess error 
autocorrelation at lag , i.e., NL ≥ )(ˆ Leρ  is always bound 
by, 
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the matrix trace. The noise variances in the input and desired 
signals are represented by  and  respectively. 2
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Proof. Following the footsteps of the previous proofs, we 
start with the error dynamics equation given by (11). Since 
we are interested in the dynamics near convergence (steady 
state) we let ∞→k . Applying the expectation operator to 
both sides of (11) will give, 
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The above assumption is commonly used in computing the 
steady state excess-MSE for stochastic LMS algorithm [7]. 
Importantly, this assumption is less restrictive and more 
natural when compared to the independence theory that was 
frequently used in the past [1]. The second term in RHS of 
(21) is involved and has no closed form expression even with 
Gaussianity assumptions that are typically made in the 
analysis of sign-LMS algorithm [7]. Even the validity of 
Gaussianity assumption is questionable as discussed by 
Eweda [8] who proposed additional, reasonable constraints 
on the noise probability density function to overcome the 
Gaussianity and independence assumptions [8] that lead to a 
more generic misadjustment upper bound for the sign-LMS 
algorithm. Nevertheless, the analyses of stochastic algorithms 
(with or without sign) in the existing literature explicitly 

assume that the input signal is “noise-free” that simplifies the 
problem to a great extent. In this paper we particularly deal 
with input noise and refrain from making any assumptions in 
deriving an upper bound for excess error autocorrelation. 
With this closing argument, we proceed by rewriting (21) 
using the identity [ ] bEbasignE ≤)(  as, 
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By Jensen’s inequality, )ˆ5.0ˆ()ˆ5.0ˆ( 2222
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therefore we have, 
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Note that, we used the relation )ˆ5.0ˆ()( 22
ˆ kke eeEL &−=ρ  in 

the above equation. The first term on the RHS of (21) can be 
easily evaluated by invoking the assumption that 2ˆ kx  and 

 are uncorrelated in steady state as, 2ˆke
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We know that baba +≤+  and 0)( =−LkkuuE . Therefore, 
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Since the individual terms  and  are 
not necessarily positive we use the Cauchy-Schwartz 
inequality to continue further. 
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We know that  is 0  for . Therefore, ][ T
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Using (24) and (27) in (23), and letting ∞→k , we see that, 
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The term  represents the residual MSE and is given by, )ˆ( 2
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It is important to observe that by reducing the step-size, 
one can arbitrarily reduce the steady state excess error 
autocorrelation at lag . We have confirmed this fact by 
extensive simulations and the results have been reported in 
[9]. 

NL ≥

 



IV. CASE STUDY 
 
System Identification using EWC-LMS: We will now 
verify the noise rejecting capability of EWC-LMS algorithm 
when 5.0−=β  in a system identification problem. A noise-
free sufficiently colored input signal of 50000 samples is 
passed through an unknown system to form the noise-free 
desired signal. Uncorrelated white Gaussian noise is added to 
the input signal. Clean desired signal is used, as the noise in 
the desired averages out automatically in stochastic LMS type 
algorithms. The input SNR was set at –10dB, 0dB and 10dB. 
We chose the order of the unknown system to be 4, 8 and 12 
and performed 100 Monte Carlo runs calculating the error 
vector norm in each case using, 
 

[ ]*10log20 ww   −= Tnormerror          (29) 
 
where,  is the solution given by EWC-LMS after one 
complete presentation of the training data and  represents 
the unknown system. We ran the regular LMS algorithm as 
well as the numerical TLS method (batch type). The step-
sizes for both LMS and EWC-LMS algorithms were varied to 
get the best possible results in terms of the error vector norm 
given by (29). Fig. 1 shows the histograms of the error vector 
norms for all three methods. The inset plots in Fig. 1 show 
the summary of the histograms for each method. EWC-LMS 
performs significantly better than LMS at low SNR values (-
10dB and 0dB), while performances are on par for SNR 
greater than 10dB. Batch type numerical TLS method gives 
best results when the SNR is high. As we have stated before, 
TLS suffers if the noise variances in input and desired are not 
the same. 
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Tw

  
V. CONCLUSIONS  

 
In this paper, we proposed a new criterion called the Error 

Whitening Criterion (EWC), which includes MSE as a 
special case. MSE and Total Least Squares (TLS) methods 
give highly biased parameter estimates if additive white noise 
with arbitrary variance is present in the input. However, 
EWC can be used to accurately estimate the underlying 
parameters of a linear system in the presence of additive 
white noise. We discussed some interesting properties of this 
new criterion, and then proposed an on-line, stochastic 
gradient algorithm with complexity. Convergence of 
the stochastic gradient algorithm was derived making 
minimal assumptions and upper bounds on the step-size and 
the steady state excess error autocorrelation were determined. 
Extensive Monte-Carlo simulations were carried out to show 
the superiority of the new criterion in a FIR system 
identification problem. Currently, further research is in 
progress to extend the criterion to handle colored noise and 
non-linear system identification.  
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Figure 1- Histogram plots showing the error vector norm for EWC-LMS, LMS algorithms and the numerical TLS solution. 
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