
Modeling the Relation from Motor Cortical Neuronal Firing to 
Hand Movements Using Competitive Linear Filters and a MLP 

 
Sung-Phil Kim1, Justin C. Sanchez1, Deniz Erdogmus1 

Yadunandana N. Rao1, Jose C. Principe1, Miguel Nicolelis2 
1 Electrical Engineering Department, University of Florida, Gainesville, FL 32611, USA 

2 Department of Neurobiology, Duke University, Durham, NC 27710, USA 
 
 

 Abstract – Recent research has demonstrated that 
linear models are able to estimate hand positions using 
populations of action potentials collected in the pre-motor 
and motor cortical areas of a primate’s brain. One of the 
applications of this result is to restore movement in 
patients suffering from paralysis. To implement this 
technology in real-time, reliable and accurate signal 
processing models that produce sufficiently small error in 
the estimated hand positions are required. In this paper, 
we propose the hybrid model approach that combines 
competitive linear filters with a neural network. The 
mapping performance of our approach is compared with 
a single Wiener filter during reaching movements. Our 
approach demonstrates more accurate estimations. 
 

I. INTRODUCTION 
 

Brain-machine interfaces are a developing technology 
that aims to transfer the intent of an individual to a 
machine. Our goal is to substitute physical control by 
electrical signals originating from the operator’s brain 
with a variety of devices. These devices serve patients 
suffering from neurological disorders.  

Nicolelis and colleagues [1] showed that linear and 
nonlinear time-delayed neural network (TDNN) models 
can predict the hand positions of a primate using the 
firing patterns of populations of cortical neurons. Large 
arrays of microelectrodes implanted in the pre-motor and 
motor cortical areas of a primate record the activity of 
populations of neurons. Spike-detection and sorting 
algorithms are used to process these analog potentials to 
determine the firings of single neurons. A count of the 
number of spikes within 100-msec windows is computed 
and fed into either the linear filter trained with least 
squares or the TDNN trained with conjugate gradient to 
match the x, y and z coordinates of primate’s hand. 

Other groups have also demonstrated neural control 
of devices using linear and nonlinear methods. Primate 
spiral tracing prediction by the population vector 
algorithm has been proposed by Moran and Schwartz [2]. 
Chapin and colleagues demonstrated prediction of lever 
pressing from ensembles of rat cortical neurons using a 
recurrent neural network (RNN) [3]. Neural cursor control 

using linear filters trained with the least squares has also 
been proposed by Serruya et al. [4]. 

However, it remains unknown which linear or 
nonlinear model produces a closer approximation of the 
target function that generates hand positions from cortical 
firing patterns. We also consider the feasibility of real-
time implementation to produce the brain-machine 
interface. It is obvious that the linear model usually 
provides the best computational cost for hardware 
implementation. Yet, it often fails to find a more complex 
input-output mapping that captures details in output 
trajectories. Recently, our group has demonstrated that the 
nonlinear model is able to estimate hand position more 
accurately than the linear model during reaching 
movements [5].  

In this paper, we propose a new approach to model 
the input-output mapping using a two-layer neural 
network whose inputs are fed from a bank of linear filters 
(see Fig. 1). This hybrid architecture shows superior 
performance compared to a single linear filter, and very 
close performance to the RNN in [5]. 
 

II. MODEL 
 

Preliminary results from the input-output mapping of 
neuronal spike counts to hand positions have shown that it is 
reasonable to assume a nonlinear relationship between input 
and output. Therefore, a single FIR filter can be sub-optimal 
for this nonlinear system modeling. 

Our modeling method is a “divide and conquer” 
approach. A complex nonlinear modeling task can be 
elucidated by dividing it into simpler linear modeling tasks 
and combining them properly. Fancourt et al. have proposed 
the multiple linear models to segment a nonstationary signal 
[6]. Assuming that a nonstationary signal is a combination of 
piecewise stationary signals, subsystems can adapt to separate 
stationary portions so that each linear filter specializes in a 
specific temporal segment. From the observations of 
characteristics of hand movement trajectories (see top figure 
of Fig. 2), we assume that the hand trajectory and the 
neuronal spike count patterns belong to two movement 
regimes, moving and stationary ones. In this case, a temporal 
segmentation using multiple linear models may be able to 
provide a better overall input-output mapping. If we switch 
on-line between models with an appropriate method, the This work was supported by a seed grant from the College of Engineering,
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multiple models can estimate the desired response with 
sufficiently small error variance. 

In our model, multiple adaptive finite impulse response 
(FIR) filters are built and trained by the normalized least 
mean square (NLMS) [7] learning rule to find mappings from 
the spike trains to hand movements. When an input is present, 
each filter produces an error between its output and the 
desired response. Each squared error is fed to an integrator to 
estimate recursively the expected value of the instantaneous 
squared error [6]. Output of the integrator for the ith filter is, 
 ,  i=1,…,M (1) )()1()1()( 2 nenn iii µεµε +−−=
where, M is the number of filters, and µ is the feedback 
parameter that controls the integration time. The filter with 
the smallest integrated error finally wins competition. We can 
use a hard or a soft competition rule to update the weights of 
the winning filter. A hard competition rule updates only the 
winner at each time instance as, 
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where, wwinner is the winning filter’s weight vector, x(n) is the 
present input, ewinner(n) is the error produced from the 
winning filter, η is the learning rate and γ is the small positive 
constant. A soft competition rule, on the other hand, updates  
all filters using a kernel as, 
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where, i is the index of filter, j is the index of  winner, and 
Λi,j(n) is the kernel function. We use a Gaussian kernel as, 
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where, di,j is the Euclidean distance between index i and j, 
which is equal to |j-i|, and σ2(n) is the kernel width, which 
decreases exponentially as n increases. Note that the learning 
rate also decreases with time. Fig. 1 depicts the selection of 
model using the integrated error. 

Although multiple linear models are able to produce very 
accurate estimated hand positions during training, they 
always need a desired response to select the winner, because 
the error (including the desired response) is used as a 
selection metric. Since we are not able to access the actual 
hand positions in testing, the estimation of hand positions 
using only inputs and trained models must be considered. 
Previous work on segmentation [6] did not consider this case 
since the filters were being trained as predictors. Our 
approach feeds the outputs of the multiple linear models into 
a multilayer perceptron (MLP) to estimate hand positions 
during testing (without knowledge of the desired response 
after training). After multiple filters are trained, the same 
training samples are fed to the bank of filter with fixed 
weights. The outputs form input vectors of same size as the 
number of multiple filters to the MLP. The MLP is trained 
with the same desired response by the conjugate gradient 
algorithm effectively learning how to compute the desired 
hand positions from the filter outputs. This overall 
architecture is very similar to a focused TDNN, however it is 

Figure 1. An overall architecture of the proposed model. The box illustrates the selection of the winner using integrated squared errors from
each linear filter. Outputs from M trained linear filters are fed to a MLP, which is trained using the conjugate gradient algorithm. d(n)
denotes the desired response. 
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 (a) (b) 
Figure 2. The actual hand trajectory for x, y, and z coordinates are presented in each top plot for (a) and (b). The
trajectories of the correlation coefficients (a), and the SERs (b) for 4-sec time window are depicted in the second, third
and fourth subplots, for a single FIR filter, multiple models with hard competition, and multiple models with soft
competition, respectively. 

trained differently. The linear filters are competitively trained 
first, and then only the nonlinear mapping is trained. 
Conventional training of the TDNN [8] with backpropagation 
is a difficult task due to the attenuation of the error by the 
hidden layer processing elements (PEs). Alternatively 
estimating the a posteriori probability of the models given the 
data as in the mixture of experts [9] was also not successful. 
 

III. SIMULATIONS 
 

In this section, we present experimental results obtained 
with the proposed model using both hard and soft 
competition rules and compare those with results of a single 
FIR filter. A single FIR filter consists of the same number of 
delays as each filter in our multiple models. 

 
A. Data 
 
Synchronous, multichannel neuronal spike trains were 

collected at Duke University using owl monkeys (Aotus 
trivirgatus). Microwire electrodes were implanted in cortical 
regions where motor associations are known [1].  The firing 

times of single neurons were recorded while the monkey 
performed a 3-D reaching task. The monkey hand position 
was also recorded (with a shared time clock) and digitized 
with a 200Hz-sampling rate. The neuronal firings were 
binned in non-overlapping windows of 100ms, which 
represents the local firing rate for single neurons. These spike 
counts were directly used as inputs to the model to estimate 
hand positions. The digitized hand position signal was 
downsampled to 10Hz to synchronize with spike counts in 
time. In order to take the reaction time into account, the spike 
trains were delayed by 0.23 seconds with respect to the hand 
position. 

 
B. Experiment Results 
 
The spike counts of each of the 104 neurons were used to 

train our model with 10 linear filters, 20 hidden PEs and 3 
linear output PEs to predict the x, y, and z coordinates of the 
monkey’s hand. Preliminary results in [5] have shown that 
the “optimal” number of delays was 20 in terms of 
minimizing the MSE of test set. Therefore, each FIR filter 
contained 20 delays, and 3 outputs so that its weight vector 



has 6240 elements. The feedback parameter in the integrator 
was 0.1, which effectively represents a memory depth of 10. 
If we increase the feedback parameter, the choice of a 
winning filter during competition would be affected more by 
present prediction errors.  A large feedback parameter may 
cause a biased selection of a winner, since the selection 
becomes more sensitive to present predicting ability with it 
[6]. A feedback parameter of 0.1, therefore, is a reasonable 
choice because it enables to compare the predicting 
performance approximately over ten points (1 sec). The 
number of filters and the number of hidden PEs were chosen 
empirically by examining the predicting performance on the 
test set. We restrained the size of them to prevent from 
resulting a huge network. 

A training set of 20,000 consecutive bins (2,000 secs) of 
data was utilized. The linear filters were trained first and their 
weights were fixed. Next, the MLP was trained with the 
outputs of multiple filters for 500 epochs. Since the number 
of filters was 10, and the number of outputs from each filter 
was 3, total 30-dimesnional inputs were fed to the MLP. 
Training of the MLP is repeated with 100 random initial 
conditions and the minimum mean square error (MSE) 
solution is accepted. In testing, all the model parameters were 
fixed and 3,000 consecutive bins of new neuronal data were 
fed to the model to predict hand positions. The testing results 
are evaluated in terms of the correlation coefficients and the 
signal to error ratio (SER) between actual and estimated hand 
trajectories during 4-sec time windows (because movements 
take approximately 4 secs). The SER is defined as the power 
of the desired signal divided by the power of the estimation 
error. Since a high correlation coefficient does not account 
for a bias in the trajectories, a measure of SER should be used 
together to evaluate the performance more meaningfully.  

In Fig. 2(a), the x, y, and z coordinates of hand 
trajectories during test are shown in the top subplot. Also 
shown in subplots of Fig. 2(a) are the correlation coefficients 
between the actual and the estimated hand trajectories for the 
single FIR filter, the multiple models with hard competition 
and the multiple models with soft competition, respectively. 
The figures show that the correlation coefficients are large 
when hand is moving. The cumulative correlation coefficients 
for the entire test set averaged over all coordinates were 0.64 
± 0.39 (standard deviation) for the single FIR, 0.72 ± 0.38 for 
the multiple models with hard competition, and 0.77 ± 0.38 
for the multiple models with soft competition. In Fig. 2(b), 
the same desired trajectories are shown in the top subplot. 
The SERs for all three models are shown also. The SERs are 
windowed in the same way as the correlation coefficients. 
The maximum SERs reached values of 7.51, 15.96, and 19.25 
for the single FIR filter, the multiple models with hard 
competition, and multiple models with soft competition, 
respectively. Cumulative SERs, which is averaged over all 
coordinates and the entire test set were 0.87 for the single FIR 
filter, 1.22 for the multiple model with hard competition, and 
1.17 for the multiple model with soft competition. It is 
obvious that the multiple models significantly improve 
Figure 3. Peaks of hand trajectories for the z-coordinate. 
 

Figure 4. The actual and the estimated hand trajectories 
when hand is at rest position for the z-coordinate. 
performance of estimation hand positions from neuronal 
spike counts compared to a single FIR filter. The issue of soft 
versus hard competition does not play a role in this data. 

 

The peaks of the estimated hand trajectory superimposed 
on the actual trajectory are shown in Fig. 3. The first 1,000 
samples (100 seconds) of hand trajectory were used to show 
how each model reaches the peaks of movements. Only three 
of six peaks are captured by the single FIR filter, while five 
peaks are captured by the multiple models. Fig. 4 shows the 
estimated hand trajectory superimposed on the actual 
trajectory when the monkey has the hand at rest. The same 
1,000 samples as above were used. The multiple models with 
soft competition produced the hand trajectory with the least 
noise. This explains why the multiple models with soft 
competition provide the highest correlation coefficient. 



The target accuracy of each model is further compared in 
Fig. 5 that shows the errors for three peak values (i.e., when 
the hand is reaching the target). In the figure, the target hand 
position is located at the origin. The distance between the 
estimated and the actual hand position associated with each 
direction (x, y, and z) is plotted on its respective axis. In all 
three plots, position is measured in terms of millimeters. We 
can see that the multiple models yields less deviation from 
the target hand position than the single FIR filter. 
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Figure 5. Estimation errors for three peak values. The 

absolute values of error (mm) in each direction are 
displayed on the respective axis. 
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V. CONCLUSIONS 

 
In this paper, we have developed hybrid architecture to 

predict the hand positions from neuronal spike populations. 
Our model combines competitive multiple models with a 
neural network framework. This approach provides 
significant improvements compared to the single linear model 
since it divides the eventually nonlinear mapping from 
neuronal data to hand positions into local linear mappings. 
Our model produced a close predicting performance to a 
RNN introduced in [5]. The cumulative correlation 
coefficient for the recurrent neural network was 0.75, the 
maximum SER reached a value of 34.19, and the cumulative 
SER was 1.46 according to experimental results on the 
exactly same test data used in this paper. The predicting 
performance of our model is comparable to the recurrent 
neural network except the maximum SER.  

The soft competition rule results in more accurate 
estimations than the hard competition rule when the hand is at 
rest position, since every filter contains weighted information 
about all inputs and desired response. Although our model 
can reach the peaks of the trajectory with small error 
variance, it is unable to estimate the trajectory when hand is 
at rest position. This may be caused by the fact that spike 
train in the pre-motor and motor areas do not code for hand 
position at rest. However, since our model has a large number 
of weights, generalization may be an issue. Further study of 
the regularization methods can help us to compact a model 
fitted to our data.   
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