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Abstract— We propose a new clustering algorithm using
Renyi’s entropy as our similarity metric. The main idea is to
assign a data pattern to the cluster, which among all possible
clusters, increases its within-clu ster entropy the least, upon
inclusion of the pattern. We refer to this procedure asdiffer ential
entropy clustering.

Not knowing the true number of clusters in advance, initially
a number of small clusters are “seeded” randomly in the data
set, labeling a small subsetof the data. Thereafter all remaining
patterns are labeled by differ ential entropy clustering.

Subsequently, we identify the “w orst cluster” by a quantity we
name the between-cluster entropy. Its membersare re-clustered,
again by differ ential entropy clustering, reducing the overall
number of clusters by one.This procedure is repeateduntil only
two clusters remain.

At each step we store the curr ent labels, thus producing a
hierarchy of clusters. The between-clusterentropy also enables
us to selectour final set of clusters in the cluster hierarchy.

We demonstrate the clustering algorithm when applied both
to artificially created data setsand a real data set.

I . INTRODUCTION

Clusteringis one of the fundamental problems of pattern
recognition. It aims at organizing data patterns into natural
groups, or clusters, in an unsupervised manner. Important
applications of clusteringcanbe found in areassuchas data
mining [1], image segmentation [2], signal compression[3]
andmachine learning[4].

Traditionally, clustering has been divided into two com-
monly usedapproaches,the partitional and the hierarchical
algorithms [5].

A partitional clusteringalgorithm obtains a singlepartition
of the data,often by minimizing a cost function, e.g.the sum
of squared errorsbetweenpatterns andclustercentroids. The
well known � -means algorithm [6] is onesuchmethod that is
verypopular. However, thismethodonly workswell for hyper-
sphericaldata, or at best hyper-elliptical data, becausethe
squarederrorcriterion canonly capture secondorder statistics
in thedata.Thismethod alsorequiresa-priori knowledgeabout
the number of partitionsthe datashouldbe groupedinto.

This work was partially supportedby NSF grants ECS-9900394and EIA
0135946.

A hierarchical clusteringalgorithm on the otherhand, pro-
ducesa hierarchy of clusters,wheredifferent setsof clusters
canbe obtainedat different levels in the hierarchy. Similarity
betweenclusterscan be defined in several ways [7], often
resultingin different clusteringresultsfor different similarity
measures.

In recentyears,sophisticatedclusteringalgorithms suchas
artificial neural networks [8], andsupport vectormachines[9],
have beenproposed.Thesemethodsare capable of finding
clustersof any shape,without a-priori knowledge about the
number of clusters.Thesemethods are often complicated,
requiring fine tuning of some parameters. Various attempts
have also been made to utilize information theory [10] in
clustering [11]. However, information theoretic approaches
oftenimposeunrealistic parametric assumptionsabout thedata
distributions in order to evaluate the information theoretic
metric [12].

In this paperwe proposea simple and intuitive clustering
algorithm firmly rooted in informationtheory, utilizing Renyi’s
entropy as our similarity metric. Renyi’s entropy lendsitself
nicely to non-parametric estimation,overcomingthedifficulty
in evaluating traditional entropy metrics.Usingentropy asour
metric,we areable to utilize all the information contained in
the distribution of the data,and not only meresecondorder
statisticsasmany traditional clusteringalgorithms arelimited
to.

In our approach, we assigna new pattern to the cluster,
which among all possibleclusters,increasesits within-cluster
entropy the least, upon inclusion of the pattern.To evaluate
groupingswe definea quantity which we namethe between-
cluster entropy, also basedon Renyi’s entropy. This quantity
was first introduced by Gokcay and Principe [12], there re-
ferred to astheclusterevaluationfunction (CEF).Our method
is capable of finding clustersof any shape,without knowing
the true number of clustersin advance.

In the next section the differential entropy clustering is
explained, and a method for non-parametrically estimating
the within-clusterentropy directly from datais introduced.In
sectionIII the between-cluster entropy is reviewed. Section
IV presentssomeperformancestudies,both on artificial data
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Fig. 1. Assigninga data pattern to a cluster.

setsanda real dataset.In sectionV we make our concluding
remarks.

I I . DIFFERENTIAL ENTROPY CLUSTERING

Considerthe situationdepictedin Fig. 1. A setof patterns,
or featurevectors, is distributed in feature space.Initially a
subsetof the featurevectors have beenassignedto cluster ���
or �
	 . Theseareshown as the encircledpoints.The problem
of clusteringis now to decidewhetheranew pattern� (pointed
to by the questionmark) shouldbe assignedto � � or �
	 .

We proposeto cluster � basedon a simple observation. If� is wrongly assignedto � � , the uncertainty, or entropy, of� � will increasemore than the entropy of ��	 will, if � is
assignedcorrectly to �
	 .

Hence, in the generalcaseof having initial clusters ��� ,��������������� � , assign� to cluster ��� if��� � � � �"!$# �%� � � !'& ��� � ��� �"!(# ��� � � ! � (1)

for
�)�*�+��������� � ,

�-,�/.
, where

��� �
�0! denotes the entropy
of cluster ��� . We refer to this methodasdifferential entropy
clustering.

At this point, three questions arise. 1) How to estimate
entropy directly from data?2) How to initially clustera subset
of thedata?3) How to decidewhich pattern� to beclustered
next?

A. Within-clusterentropy

Previously, entropy hasbeena metric difficult to evaluate
without imposing unrealistic assumptions aboutthe datadis-
tributions [12]. Recently it was discovered that an entropy
measureproposed by Renyi [13] lends itself nicely to non-
parametric estimationdirectly from data[14].

Renyi’s entropy for a stochasticvariable 1 with probability
densityfunction (pdf) 243 is given by [13]��5
� 16! � �� #87 9;:�<'= 2?>3A@ � � 7�BDC � 7 ,�����

(2)

Specifically, for 7 �FE
we obtain[14]� 5 � 16! � # 9;:�< = 2 	3 @ � � (3)

which is calledRenyi’s quadratic entropy [14].

This expressioncan easily be estimateddirectly from data
by the use of Parzen window density estimation, with a
multidimensional Gaussianwindow function. Assume that
cluster � � consistsof the set of discretedatapoints � � �G.H������������JI � . Now, the pdf estimatebasedon the datapoints of� � is given by [15]

K2L3 � �I �8MONP �;QR�TS � �U#V� � �JW 	�X ! � (4)

where
I � is thenumberof datapointsin �Y� , andwehaveused

a symmetric Gaussiankernelwith covariancematrix Z �[W 	 X .
By substituting(4) into (3), andutilizing the propertiesof the
Gaussiankernel,we obtainan estimateof the entropy of � �
as ��� �
�0! � # 9\:+<H] � �'��! � (5)

where

] � � � ! � �I 	� M$NP �\QR� M$N
P^ QR� S � � � #V� ^ �_E0W 	 X ! � (6)

Sincetheentropy is calculatedbasedon points assignedto the
samecluster, we refer to (5) as the within-clusterentropy.

In this paper, all S � � � #U� ^ �`E�W 	 X ! ��._�ba��������������JI
, whereI

is the total number of data patterns in the data set, are
calculatedand storedin an

I 	 symmetricproximity matrix.
This means that after the proximity matrix hasbeenobtained,
all calculationsare simple matrix manipulations. Obviously
this limits somewhat the sizeof the datasetwe cancluster.

Another issueregards the kernel size
W

. Our experiments
have shown that promising clustering results are obtained
provided that

W
is chosensuch that the Parzenpdf estimate

is relatively accurate.Choosing
W

thus belongs to the more
general problem of non-parametric pdf estimation. In this
paper, we choose

W
manually. It should be noted that our

algorithm has resemblance to other kernel basedclustering
methods, suchas spectralclustering[16] and Mercer kernel
basedclustering[17]. In all suchmethods the kernel sizeis a
parameterof greatimportance,which hasto be chosenbased
on some heuristic. Note that for all data sets used in the
experimentswe normalize eachfeatureindividually to have
a range cd# �+����e andzeromean.

B. Cluster initialization

Initially we “seed” � init clustersin the data set. This is
done by first randomly selecting � init “seed” patternsfrom
the data set, eachinitially representinga cluster. Thereafter
thepoint closestto any member of a clusteris includedin the
cluster, until a preselectedvalue of

I
init patternshave been

assignedto eachcluster. Thegrouping is done this way instead
of just finding the

I
init nearestneighbors to the each“seed”

pattern, since this makes the grouping more sensitive to the
datastructure[12].

C. Selectingthe next pattern for clustering

The next patternto be clusteredcanbe selectedin several
ways.
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Fig. 2. Exampleof differential entropy clustering.

f Randomly - this hasthedisadvantagethatearlyclustering
of points far from the initial clusters can make the
clusteringprocessun-stable.f As the patternclosestto a cluster prototype - this ap-
proach makesthe clusteringmore stable.An example of
a clusterprototype cane.g.be the clustermean.

Figure 2 shows an example of clusteringwith the method
describedabove. In this examplewe selectthenext patternto
beclusteredasthepatternclosestto oneof theclustermeans.
The regions wherethe initial clustersare“seeded” areshown
in (a) enclosedby thethick lines.Theinitial clustersizeswereI

init
�g� C . In (b) the resultingset of clustersis shown forWh� C � C�i . Eachclusteris markedby a differentsymbol. In this

casefour errors aremade.Thethick linesin (b) indicatewhere
the erroneouslylabeledpatterns actuallybelong. It shouldbe
notedthat � -meansfails completelyon this kind of data,as
we will show in sectionIV. The dataset usedhereis taken
from [8].

Obviously, this example is not very realistic. We do not
know the true number of clustersin advance, andeven if we
do, we cannot be sureto “seed” a patternin eachof the true
clusters.
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Fig. 3. Identifying “worst cluster” using between-cluster entropy. In this
example j?k or j?l is the “worst cluster.”

Thesolutionwe proposeto this problemis to “seed”a large
number of clusters,label all the points, and then to re-assign
labelsto the members of the “worst cluster”. Re-labelingthe
members of the “worst cluster” is againdone by differential
entropy clustering. The procedure is repeated, reducing the
number of clustersby one at eachstep. Hence,to find the
“worst cluster” we needa meansfor clusterevaluation, and
this is the topic for the next section.

I I I . ENTROPY CLUSTER EVALUATION

Gokcay andPrincipe[12] proposedaninformationtheoretic
clusteringalgorithm basedon the clusterevaluation function.
Their algorithm seeksvalleys in the databy minimizing the
CEF.

Herewe proposeto usethe CEF in a different manner. We
do not intend to minimize it, only to compute it, in order to
find the “worst cluster” at eachstep.Toward this endwe use
the CEF to define a quantity we namethe between-cluster
entropy.

A. Between-cluster entropy

Insteadof using(6) to compute the entropy of eachcluster
individually, we modify it suchthat the double sumruns over
all datapoints, and includes a membership function, m � ��� ^ !
which equalsone if �$� and � ^ belongs to differentclusters,
andzeroif not.We nametheresultingexpressionthebetween-
clusterentropy, which is given by��� � � ��������� �Hn�! � # 9\:+<H] � � � ��������� �'nY! � (7)
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where ] � � � ��������� �'n�! �A�����
� �Eqp n�rQR� I � MP �;QR� MP^ QR� m � �T� ^ ! S � �T�"#V� ^ �_E0W 	sX ! � (8)

for clusters � � , �t�u����������� � . Equation (8) equalsthe CEF
introducedin [12].

If theclustersarewell separated,
] � �Y� ��������� � n ! will have

a small value,consequently
��� ��� ��������� � n ! will have a large

value.This providesus with a tool for clusterevaluation.

B. Identifying the “wor st cluster”

In Fig. 3 we have illustrated how the between-cluster
entropy can be usedto identify the “worst cluster”. In (a) a
datasethasbeenpartitioned into threeclusters.We proceedby
eliminatingone clusterat a time, and calculatethe between-
clusterentropy basedon the remaining clustersin eachcase.
To be morespecific,by eliminating,we meanthat the mem-
bershipfunction m is set to zerowhenever actingon any of
themembersof theeliminatedcluster. For example, in (b) �wv
is eliminated,and

��� �G� � � 	 ! is calculated, asindicatedby the
arrows. Likewise in (c) and(d).

The “worst cluster” is now selectedas the cluster that
wheneliminated, resultsin thelargestbetween-clusterentropy
basedon the remaining clusters,because this meansthat the
remaining clusters are the most separated clusters. In the
situationdepictedin Fig. 3, this method resultsin either �w�
or � 	 beingidentifiedas the “worst cluster”.

C. Selecting the final setof clusters

Note that before eachtime the members of a cluster are
re-assignedlabels,and the number of clustersis reduced by
one, all patternshave beenlabeled.Thus at eachstep a set
of clustersexist. We storethe clusterlabelsat eachstep,thus
producinga hierarchy of clusterassignments.We continuethis
procedureuntil only two clustersremain.The issuenow is to
decidewherein the hierarchy to selectour final clustering.
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Fig. 5. Meanerror for different x init .

At eachstep we calculatethe overall between-cluster en-
tropy basedon all clustersdefinedat that step,as given by
(7). Our experimentshave shown that when we continue re-
clustering, the between-cluster entropy increasesdrastically
when the number of clustersis reducedto a value less than
the true number of clusters.

Thus, by monitoring the difference in between-cluster en-
tropy calculatedbeforeandafterre-clusteringat eachstep,we
areable to selectour final setof clustersin the hierarchy.

D. Instability dueto random initialization

Becausethe initial clusters are “seeded” randomly, the
clusteringresult candiffer whenclusteringthe samedataset
several times.This is mostprevalent for datasetsconsistingof
highly irregular clusters.The between-cluster entropy calcu-
latedfor the final clusteringin eachcasecanprovide us with
a good indication of which random initialization provided the
bestresult.

IV. PERFORMANCE STUDIES

In this sectionwe test the performanceof our algorithmon
threedatasets,two artificially createdandonereal.

First we re-visit the data set shown in Fig. 2. In this
experiment, we show the influence of

W
on the clustering

results. We “seed” � init
�yE C initial clusters each withI

init
�z� C members. The next pattern to be clusteredis

the one closestto somealreadylabeledpattern.For each
W

the algorithm is run 10 times. Figure 4 shows the average
number of resultingerrors for a rangeof

W
’s. We seethat forC � C�{}| W |-C �;�sE thealgorithm performs very well, producing

on averagebetween6 and10 errors. It shouldbenotedthatwe
obtainalmostasgood resultswhenchoosingthe next pattern
to be clusteredasthe oneclosestto oneof the clustermeans.

Figure5 shows the theclusteringperformance asa function
of � init over 10 runsusing

Wh� C � C�~�� . Theerror barsindicate
the standarddeviation. Large error bars for � init | � i are
typically producedbecauseof onecomplete failure out of the
10 runs.For � init � � ~ , the algorithm proves to be always
stable.
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Fig. 6. Determining true numberof clusters.
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Fig. 7. x -meansresult for dataset shown in Fig. 2.

Figure 6 shows a plot of the between-cluster entropy at
the current stepsubtractedthe between-clusterentropy at the
previous step.The true number of clustersis four. It can be
seenthatwhenwe go from four clustersto three,thebetween-
cluster entropy becomes large compared to at the previous
step, creatinga distinct decrease in the plot. We selectour
final clusteringresult as the set of clustersthat exist before
the first significantdecreasein the plot.

For comparison,we show in Fig. 7 the resultof clustering
the samedata set with the popular � -means algorithm. We
show the bestresult out of 10 runs. It is clear that � -means
is un able to cope with this kind of dataset.

Figure8 shows theclusteringresultfor somehighly irregu-
lar clusters.For instance,for a kernelsize

WU� C � C+~ a perfect
clusteringis obtainedin nine out of 10 trials. However, the
rangeof

W
’s for which we obtainsatisfyingclusteringresults

is morenarrow thanin the previous experiment.
As shown in Fig. 9 � -means fails completelyalso in this

case.This is to be expectedsince the clusters are highly
irregular.

Finally, we testour method on theWINE dataset,extracted
from the UCI repository database[18]. This datasetconsists
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Fig. 8. Result for highly irregular clusters, o��h�s� �r� .
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Fig. 9. x -meansresult for highly irregular clusters.

of 178 instancesin a 13-dimensional featurespace,wherethe
featuresarefound by chemicalanalysisof threedifferenttypes
of wines.We include this dataset in our analysisbecause it
shows that our algorithm is capableof performing well in a
high dimensional featurespace.

For C � E ��| W |-C � � we obtainclusteringresultswith only a
few failures.E.g. for

WU� C ��E { , we obtaina meanerrorof 7.6
over 10 runs, whenwe selectthe next patternto be clustered
astheoneclosestto somelabeledpattern. Whenselectingthe
next patternastheoneclosestto oneof theclustermeans,the
meanerror was9.2.

V. CONCLUSION

We have presented a new clusteringalgorithmusinga non-
parametricestimateof Renyi’sentropy asoursimilarity metric.
A datapatternis assignedto theclusterincreasingit’s within-
clusterentropy the leastamong all clusters,upon inclusion of
the pattern.Clustergroupings are evaluated by means of the
between-clusterentropy.

We have shown that our algorithm performs well on data
sets of irregular and non-sphericalshape.We attribute this
property to the entropy metric, which capturesinformation



contained in the datadistribution beyond secondorderstatis-
tics.

We have also shown that the algorithm is capable of
clusteringa high-dimensional dataset.

One drawback of our algorithm lies in the computational
complexity involved in calculating the between-cluster en-
tropy. It requires an � � I 	 ! operation, where

I
is the total

number of patterns in the dataset.For large datasets,where
we do not have the ability to storea proximity matrix in the
memory, this becomesa problem. The within-clusterentropy
canbe calculatedrecursively whenincluding a new patternin
a cluster, thusit requiresan � � I �+! operation for eachcluster,�'� �G�����+��������� � .

In addition, at present, we have not implemented any
automatic procedure to determine the kernel size

W
, suchthat

we ensurethat the inherent Parzenpdf estimateis relatively
accurate.Another possibilityis to anneal thekernelsizeduring
theclusteringprocess,from a largevalueto asmallvalue.This
could perhaps reduce the number of initial clustersneeded,
by providing more robustnessin the differential entropy stage
in the first phasesof the clusteringalgorithm, and provide a
fine-tuning in the final phasesof the algorithm. One could
also associatea unique kernel for every data pattern.Each
kernel could be adaptedbasedon the neighboring patterns.
A combination of the aforementionedstrategies could also
be implemented. These suggestions are topics for further
research.
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