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Abstract—We propose a new clustering algorithm using
Renyi's entropy as our similarity metric. The main idea is to
assign a data pattern to the cluster, which among all possible
clusters, increasesits within-cluster entropy the least, upon
inclusion of the pattern. We refer to this procedure as differ ertial
entropy clustering.

Not knowing the true number of clustersin advance,initially
a number of small clusters are “seeded” randomly in the data
set, labeling a small subsetof the data. Thereafter all remaining
patterns are labeled by differ ential entropy clustering.

Subseaqiently, we identify the “worst cluster” by a quantity we
name the between-clister entropy. Its membersare re-clustered,
again by differential entropy clustering, reducing the overall
number of clusters by one. This procedure is repeateduntil only
two clusters remain.

At each step we store the current labels, thus producing a
hierarchy of clusters. The between-clusterentropy also enables
us to selectour final set of clustersin the cluster hierarchy.

We demonstrate the clustering algorithm when applied both
to artificially created data setsand a real data set.

|. INTRODUCTION

Clusteringis one of the fundanental prodems of pattern
recoqition. It aims at organizing data patterrs into natual
groys, or clusters,in an unsipervised manrer. Important
applications of clusteringcanbe found in areassuchas data
mining [1], image segmentatio [2], signhal compession|[3]
and machire learning[4].

Traditiorally, clusterig has beendivided into two com-
monly used appoaches,the partitioral and the hierarclical
algorithms [5].

A partitioral clusteringalgorithm obtdns a single partition
of the data,often by minimizing a costfunction, e.g.the sum
of square errorsbetweenpatters and clustercentroics. The
well known K-mears algorithm [6] is onesuchmethal thatis
very popuar. However, this methodonly workswell for hyper
sphericaldata, or at best hypea-elliptical data, becausethe
squareckrror criterion canonly captue secondorde statistics
in thedata.This metha alsorequiresa-priai knowledgeabou
the nunber of partitionsthe datashouldbe groypedinto.
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A hierachical clusteringalgoiithm on the otherhard, pro-
ducesa hierardy of clusters,wheredifferent setsof clusters
canbe obtainedat different levelsin the hierarcly. Similarity
betweenclusterscan be definedin several ways [7], often
resultingin different clusteringresultsfor different similarity
measurs.

In recentyears,sophisticatedtlusteringalgorithms suchas
artificial neurd networks [8], andsuppat vectormachineg9],
have been proposed. Thesemethodsare capalte of finding
clustersof ary shape,without a-priai knowledge abou the
nunber of clusters. These method are often complicated
requring fine tuning of some paraméers. Variows attempts
have also been madeto utilize information theay [10] in
clustering [11]. However, information theoretic appoaches
oftenimposeunraalistic paranetric assumptiasabou the data
distributions in order to evaluate the information theoretic
metric [12].

In this paperwe propose a simple and intuitive clustering
algoithm firmly rooted in informationtheory utilizing Reryi's
entrqy as our similarity metric. Reryi’s entropy lendsitself
nicely to nonparametic estimationovercomingthe difficulty
in evaluating traditioral entrqoy metrics.Using entrogy asour
metric, we areableto utilize all the information contaired in
the distribution of the data,and not only mere secondorder
statisticsas mary traditioral clusteringalgorithms are limited
to.

In our appoach, we assigna new patternto the cluster
which amorg all possibleclusters,increasests within-cluster
entiopy the least upm inclusion of the pattern.To evaluate
groupingswe definea quarity which we namethe between-
cluster entropy, also basedon Reryi's entrgy. This quarity
was first introduced by Gokay and Principe[12], therere-
ferred to asthe clusterevaluation fundion (CEF). Our metha
is capalte of finding clustersof ary shape without knowing
the true numbe of clustersin adwence.

In the next section the differertial entrqoy clusteringis
explained, and a metha for non-parametricly estimating
the within-clusterentrogy directly from datais introduced.In
sectionlll the betweercluster entrqoy is reviewed. Section
IV presentssomeperfamancestudies,both on artificial data



Fig. 1. Assigninga data patternto a cluste.

setsanda real dataset.In sectionV we make our concludng
remarls.

Il. DIFFERENTIAL ENTROPY CLUSTERING

Considerthe situationdepictedin Fig. 1. A setof patterrs,
or featurevectas, is distributed in featue space.lnitially a
subsetof the featurevectos have beenassignedo clusterC,
or C>. Theseare shovn asthe encircledpoints. The problem
of clusteringis now to decidewhethera new patternx (pointed
to by the questionmark) shouldbe assignedo C; or Cs.

We proposeto clusterx basedon a simple obseration. If
x is wrongly assignedo C4, the uncertaity, or entropy, of
C1 will increasemore than the entroy of Cy will, if x is
assigneccorredly to Cs.

Hence,in the generalcaseof having initial clustersCy,
k=1,...,K, assignx to clusterC; if

H(Ci +x) - H(C;) < H(Cp +x) — H(Cy), (1)

fork=1,...,K, k # i, where H(C}) derotesthe entrofy
of clusterC},. We referto this methodas differential entropy
clustering

At this point, three questiols arise. 1) How to estimate
entropy directly from data?2) How to initially clustera subset
of the data?3) How to decidewhich patternx to be clustered
next?

A. Within-cluster entropy

Previously, entrqoy hasbeena metric difficult to evaluate
without impaosing unrealistic assumptias aboutthe datadis-
tributions [12]. Recentlyit was discovered that an entropy
measurepropased by Reryi [13] lendsitself nicely to non-
paranetric estimationdirectly from data[14].

Reryi's entrqoy for a stochastiovariableX with prabability
densityfunaion (pdf) fx is givenby [13]

1
log/fﬁ‘(‘ dx, a>0, a#1. (2

Hg(X) =
r(X) = 7
Specifically for a = 2 we obtain[14]

m@h—m/ﬁﬁ, 3)

which is called Reryi's quadatic entrogy [14].

This expressioncan easily be estimateddirectly from data
by the use of Parzenwindown density estimation, with a
multidimensional Gaussianwindow function. Assume that
clusterCy consistsof the setof discretedatapointsx;, i =
1,..., Ni. Now, the pdf estimatebasedon the datapoints of
Cy is given by [15]

1
fX: M;G(X—Xi,(le), (4)
whereN, is thenunberof datapointsin C',, andwe have used
asymmetic Gaussiarkernelwith covaiancematrix ¥ = ¢21.
By substituting(4) into (3), andutilizing the propertiesof the
Gaussiarkernel,we obtain an estimateof the entrofy of C,
as

H(Cr) = —1log V(Ck), (5)
where
1 Nk Nk
V(Cy) = WZZG(XZ' —x;,20°1). (6)
k=1 j=1

Sincethe entrqy is calculatedbasedon poirts assignedo the
samecluster we referto (5) asthe within-cluster entroyy.

In this paper all G(x; — x;,20%I), 4,5 =1,...,N, where
N is the total numbe of data patterrs in the data set, are
calculatedand storedin an N2 symmetricproxmity matrix.
This mears that after the praximity matrix hasbeenobtained
all calculationsare simple matrix manipuldions. Obviously
this limits somevhat the size of the datasetwe cancluster

Another issueregads the kernel size o. Our experiments
have shavn that promising clustering results are obtainel
provided that o is chosensuchthat the Parzenpdf estimate
is relatively accurate.Choosingo thus belorgs to the more
geneal prodem of nonparanetric pdf estimation.In this
paper we chose o manuwally. It should be noted that our
algoithm has resemblace to other kernel basedclustering
methals, such as spectralclustering[16] and Mercer kernel
basedclustering[17]. In all suchmethod the kerrel sizeis a
paraneter of greatimportance,which hasto be chosenbased
on some heuristic. Note that for all data setsusedin the
experimentswe normalize eachfeatureindividually to have
arange [—1,1] andzeromean.

B. Clusterinitialization

Initially we “seed” Kjn;i clustersin the dataset. This is
dore by first randanly selectingK;,;; “seed” patternsfrom
the data set, eachinitially representinga cluster Thereafer
the point closestto any memter of a clusteris includedin the
cluster until a preselectedialue of Nj,;; patternshave been
assignedo eachcluster Thegroyingis dore this way instead
of just finding the Nj,;; neaestneigtborsto the each*seed”
pattern sincethis makes the grouping more sensitve to the
datastructure[12].

C. Selectingthe next patternfor clustering

The next patternto be clusteredcan be selectedn several
ways.
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Fig. 2. Exampleof differentid entropy clustering.

« Randonty - this hasthedisadartagethatearly clustering
of points far from the initial clusters can make the
clusteringprocessun-stable.

« As the patternclosestto a cluster protaype - this ap-
proach makesthe clusteringmore stable.An examge of
a clusterprotaype cane.g. be the clustermean.

Figure 2 shavs an exampe of clusteringwith the method

describedabore. In this examplewe selectthe next patternto

be clusteredasthe patternclosestto oneof the clustermeans.

The regions wherethe initial clustersare “seeded are shovn
in (a) enclosedy thethick lines. Theinitial clustersizeswere
Nipit = 10. In (b) the resultingset of clustersis shavn for
o = 0.08. Eachclusteris marked by a differentsymbad. In this
casefour errois aremade.Thethick linesin (b) indicatewhere
the erroreouslylabeledpatterrs actuallybelong It shouldbe
notedthat K -meansfails completelyon this kind of data,as
we will shav in sectionlV. The datasetusedhereis taken
from [8].

Obviously, this examge is not very realistic. We do not
know the true numter of clustersin adwvarce, andevenif we
do, we cannot be sureto “seed” a patternin eachof the true
clusters.

C2 CZ
@ (b)
C1 C1
Csy = J Csy
C2 C2

() (d)

Fig. 3. Identfying “worst cluste” using between-clister entropy. In this
example Cy or Cs is the “worst cluster”

The solutionwe proposeto this problemis to “seed”alarge
nunmber of clusters,label all the points, andthento re-assign
labelsto the membes of the “worst cluster”. Re-labelingthe
memlers of the “worst cluster” is againdore by differential
entrqy clustering The procedire is repeatd, redwing the
nunber of clustersby one at eachstep. Hence,to find the
“worst cluster” we needa meansfor clusterevaluation, and
this is the topic for the next section.

I1l. ENTROPY CLUSTER EVALUATION

Gokcgy andPrincipe[12] proposedaninformationtheoretic
clusteringalgoiithm basedon the clusterevaludion function
Their algoiithm seeksvalleys in the databy minimizing the
CEF

Herewe propaseto usethe CEF in a different manrer. We
do not intend to minimize it, only to compute it, in orderto
find the “worst cluster” at eachstep. Toward this endwe use
the CEF to define a quarity we namethe between-kuster

entraoy.

A. Between-clster entropy

Insteadof using(6) to compue the entrqoy of eachcluster
individually, we modify it suchthatthe doude sumruns over
all datapoirnts, andincludes a membeship function, M (x;;)
which equalsoneif x; andx; belong to differentclusters,
andzeroif not.We nametheresultingexpressionthe between
clusterentropy, which is given by

H(Cl7"'7CK)Z_IOgV(Cl)"'acK)J (7)
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where
V(Cy,...,Ck) =...
1 N N
= — M (x4)G(x; — xj,20°T), (8)
2HkK:1Nk;; ! !

for clustersCy, k = 1,..., K. Equation (8) equalsthe CEF
introducedin [12].

If the clustersarewell separatedV (C4,...,Ck) will have
a smallvalue,consegently H(C4,...,Ck) will have alarge
value. This provides us with a tool for clusterevaludion.

B. ldentifyirg the “wor st cluster”

In Fig. 3 we have illustrated how the betweercluster
entrojy canbe usedto identify the “worst cluster”. In (a) a
datasethasbeenpartitiona into threeclusters We proceecby
eliminating one clusterat a time, and calculatethe between-
clusterentrqpy basedon the remainng clustersin eachcase.
To be more specific,by eliminating, we meanthat the mem-
bershipfunction M is setto zerowheneer actingon ary of
the memlers of the eliminatedcluster For examge, in (b) C'3
is eliminated,and H(C4, C2) is calculatedasindicatedby the
arrons. Likewise in (c) and (d).

The “worst cluster” is now selectedas the cluster that
wheneliminated resultsin the largestbetweenrelusterentropy
basedon the remainirg clusters,becase this meansthat the
remainirg clusters are the most separate clusters.In the
situationdepictedin Fig. 3, this methal resultsin either Cy
or C beingidentifiedasthe “worst cluster”.

C. Selectilg the find setof clustess

Note that before eachtime the membes of a clusterare
re-assignedabels,and the nunber of clustersis redwced by
one, all patternshave beenlabeled.Thus at eachstepa set
of clustersexist. We storethe clusterlabelsat eachstep,thus
producinga hierardy of clusterassignmets. We cortinuethis
procalureuntil only two clustersremain.The issuenow is to
decidewherein the hierachy to selectour final clustering
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Fig. 5. Meanerror for different Kjp;;.

At eachstepwe calculatethe overall between-clster en-
tropy basedon all clustersdefinedat that step, as given by
(7). Our experimentshave shavn that whenwe continte re-
clustering the betweereluster entrogy increasesdrastically
when the numter of clustersis reducedto a value lessthan
the true numbe of clusters.

Thus, by moritoring the difference in between-tuster en-
tropy calculatecbeforeandafterre-clusteringat eachstep,we
areableto selectour final setof clustersin the hierarcly.

D. Instability dueto randam initialization

Becausethe initial clusters are “seeded” randanly, the
clusteringresultcan differ when clusteringthe samedataset
severd times.Thisis mostprevadent for datasetscorsistingof
highly irreguar clusters.The between-clater entropy calcu-
latedfor the final clusteringin eachcasecan provide us with
a god indicatian of which randanm initialization provided the
bestresult.

IV. PERFORMANCE STUDIES

In this sectionwe testthe perfamanceof our algorithmon
threedatasets,two artificially createdand onereal.

First we re-visit the data set shovn in Fig. 2. In this
experiment, we shav the influence of o on the clustering
results. We “seed” Kjn;; = 20 initial clusters each with
Nipit = 10 membes. The next patternto be clusteredis
the one closestto somealreadylabeledpattern.For eacho
the algorittm is run 10 times. Figure 4 shows the averag
nunber of resultingerross for a rangeof ¢’s. We seethat for
0.06 < ¢ < 0.12 the algoiithm perfoms very well, producing
on avergge betweert and10 erross. It shouldbe notedthatwe
obtainalmostas god resultswhenchoosingthe next pattern
to be clusteredasthe oneclosestto one of the clustermeans.

Figure5 shaws the the clusteringperformane asa function
of Kjpjt over 10runsusingo = 0.095. Theerra barsindicate
the standarddeviation. Large error barsfor Kt < 18 are
typically prodicedbecausef one comgete failure out of the
10 runs. For K;pit > 19, the algoithm provesto be always
stable.
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Fig. 7. K-meansresultfor datasetshowvn in Fig. 2.

Figure 6 shavs a plot of the between-clater entropy at
the curren stepsubtractedhe betweerclusterentropy at the
previous step. The true numker of clustersis four. It canbe
seenthatwhenwe go from four clustersto three,the between-
cluster entrofy becanes large compared to at the previous
step, creatinga distinct decreae in the plot. We selectour
final clusteringresult as the set of clustersthat exist before
the first significantdecrasein the plot.

For comparison,we show in Fig. 7 the resultof clustering
the samedataset with the popular K-means algoiithm. We
shawv the bestresultout of 10 runs. It is clearthat K-means
is un ableto cope with this kind of dataset.

Figure 8 shaws the clusteringresultfor somehighly irregu-
lar clusters.For instancefor a kernelsizes = 0.09 a perfect
clusteringis obtainedin nine out of 10 trials. However, the
rangeof ¢’'s for which we obtain satisfyingclusteringresults
is more narrav thanin the previous expeiment.

As shawn in Fig. 9 K-means fails completelyalsoin this
case. This is to be expectedsince the clustersare highly
irregular.

Finally, we testour metha onthe WINE dataset,extracted
from the UCI repasitory datalase[18]. This datasetconsists
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of 178instancesn a 13-dimensioml featurespacewherethe
featuesarefound by chemicalanalysisof threedifferenttypes
of wines. We include this datasetin our analysisbecase it
shaws that our algorithmis capableof perfaming well in a
high dimensioml featurespace.

For 0.25 < ¢ < 0.3 we obtainclusteringresultswith only a
few failures.E.g. for o = 0.26, we obtaina meanerrorof 7.6
over 10 runs, whenwe selectthe next patternto be clustered
asthe oneclosestto somelabeledpattern Whenselectingthe
next patternasthe oneclosestto oneof the clustermeansthe
meanerra was9.2.

V. CONCLUSION

We have preseted a new clusteringalgorithmusinga non
paranetric estimateof Reryi’ s entrqoy asour similarity metric.
A datapatternis assignedo the clusterincreasingt’s within-
clusterentrofy the leastamorg all clusters,upm inclusian of
the pattern.Clustergrowpings are evaluaged by mears of the
betweerclusterentropy.

We have shawvn that our algorithm performs well on data
sets of irregular and nonsphericalshape.We attribute this
property to the entropy metric, which capturesinformation



contaired in the datadistribution beyond secondorder statis-
tics.

We have also shawvn that the algorithm is capable of
clusteringa high-dmensiona dataset.

One drawback of our algoiithm lies in the compuational
compexity involved in calculating the betweereluster en-
tropy. It requres an O(N?2) operati®m, where N is the total
numter of patterrs in the dataset. For large datasets,where
we do not have the ability to storea proximity matrix in the
memoy, this becanesa problem. The within-cluster entrofy
canbe calculatedrecursvely whenincludng a new patternin
acluster thusit requiesan O(Ny,) opeation for eachclustey
Cy, k=1,... K.

In addition, at presety we have not implemented ary
automaic procedireto deternine the kerné size o, suchthat
we ensurethat the inheren Parzenpdf estimateis relatively
accurateAnothe possibilityis to anneathekernelsizeduring
theclusteringprocess from alargevalueto asmallvalue. This
could perhgs redice the nunber of initial clustersneeded
by providing more robustnessn the differential entropy stage
in the first phasesf the clusteringalgorithm, and provide a
fine-turing in the final phasesof the algoithm. One could
also associatea unique kernel for every data pattern.Each
kernel could be adaptedbasedon the neightoring patterrs.
A combiration of the aforenentionedstratgies could also
be implemented. These suggstions are topics for further
research.
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