
Linear Least-Squares Based Methods for Neural
Networks Learning

Oscar Fontenla-Romero1, Deniz Erdogmus2, J.C. Principe2,
Amparo Alonso-Betanzos1, and Enrique Castillo3

1 Laboratory for Research and Development in Artificial Intelligence,
Department of Computer Science, University of A Coruña,

Campus de Elviña s/n, 15071 A Coruña, Spain
2 Computational NeuroEngineering Laboratory,

Electrical and Computer Engineering Department,
University of Florida, Gainesville, FL 32611, USA

3 Department of Applied Mathematics and Computational Sciences,
University of Cantabria and University of Castilla-La Mancha,

Avda de Los Castros s/n, 39005 Santander, Spain

Abstract. This paper presents two algorithms to aid the supervised
learning of feedforward neural networks. Specifically, an initialization and
a learning algorithm are presented. The proposed methods are based on
the independent optimization of a subnetwork using linear least squares.
An advantage of these methods is that the dimensionality of the effective
search space for the non-linear algorithm is reduced, and therefore it
decreases the number of training epochs which are required to find a
good solution. The performance of the proposed methods is illustrated
by simulated examples.

1 Introduction

During the last decade, several techniques have been presented to speed up the
convergence of the artificial neural networks learning methods. Among them,
some of the most successful are second order methods [1, 2]. These techniques
have been demonstrated to be significantly faster than gradient based methods.
In addition, other algorithms were presented, such as adaptive step size meth-
ods. In this last class of methods, Almeida et al. [3] developed a new method for
step size adaptation in stochastic gradient optimization. This method uses inde-
pendent step sizes for all parameters and adapts them employing the estimates
of the derivatives available in the gradient optimization procedure. Moreover, a
new on line algorithm for local learning rate adaptation was proposed by Schrau-
dolph [4].

Likewise, several solutions have been proposed for the appropriate initializa-
tion of weights. Among others, Nguyen and Widrow [5] presented an algorithm
that selects initial weights and biases for a layer, so that the active regions of the
layer’s neurons will be distributed approximately evenly over the input space.

Drago and Ridella [6] proposed a statistical analysis aimed to determine the re-
lationship between a scale factor proportional to the maximum magnitude of the
weights and the percentage of paralyzed neurons. These methods were shown to
be very useful to improve the convergence speed.

In addition, some least squares applications have been proposed [7, 8]. These
approaches are based on heuristic assumptions that do not consider the scaling
effects of the nonlinear activation function. In this work, new theoretical results
are presented that enhance the previous studies. Specifically, two algorithms,
based on linear least squares, are presented to aid the current supervised learning
methods for neural networks in order to accelerate their convergence speed.

2 Theoretical background

In this section, previous theoretical results are presented that will be used in
the proposed algorithms. Consider the one-layer neural network in figure 1. The
input of the network is represented by the vectorial variable x = (x1, x2, . . . , xI)T

and the output by the vector y = (y1, y2, . . . , yJ)T . The outcome of the network
is computed as y = f(z), where z = Wx + b and f ∈ IRJ is a nonlinear function.
If the weighted mean squared error (weighted MSE) is employed as cost function

W , b

f (z)

x

+

+

+

...
...

y

z f1

f2

f J
1

Fig. 1. One-layer neural network and nomenclature employed.

then the optimal weights and bias of the network can be obtained by solving the
following minimization problem:

min
W,b

C = E[(d− y)T H(d− y)] (1)

where d = (d1, d2, . . . , dJ)T is the desired output of the network and H = [hij] is
a weight matrix (symmetric by definition). However, this problem is, in general,
a nonlinear optimization problem and hence it is currently solved using nonlinear
methods. In this work a new result is presented that allows to solve this problem
using a linear method.

Lemma 1. Let d and y be the desired and actual outputs of a one-layer neural
network, W and b be the weight matrix and the bias vector, and f , f−1, f ′ be the
nonlinear function, its inverse and its derivative. Then the following equivalence
holds up to the first order of the Taylor series expansion:

min
W,b

E[(d− y)T H(d− y)] ≈ min
W,b

E[(f ′(d̄). ∗ ε̄)T H(f ′(d̄). ∗ ε̄)] (2)

where ’.∗’ denotes the element-wise product, d̄ = f−1(d) and ε̄ = d̄− z.

The proof of this and following lemmas is not included due to space restrictions.
Thus, using the previous lemma the initial minimization problem in (1) can be
alternatively formulated as:

min
W,b

C∗ = E[(f ′(d̄). ∗ ε̄)T H(f ′(d̄). ∗ ε̄)] (3)

If the alternative cost function in (3) is used then the minimization problem
is linear in the parameters (weights an biases). This is due to the variable ε̄
depending linearly on W and b. Let {(xs,ds), s = 1, . . . , S} be a set of training
pairs then the minimization problem in (3) can be rewritten as follows:

min
W,b

C∗ =
1
S

S∑
s=1

J∑

i=1

J∑

j=1

hijf
′
i(d̄is)f ′j(d̄js)ε̄isε̄js (4)

where d̄is, ε̄is and fi are the ith component of the vectors d̄s, ε̄s and f , respec-
tively. The optimal solution for the minimization problem in (4) can be obtained
taking the derivatives of the cost function with respect to the weights and biases
of the system and equating all the derivatives to zero. In this way, the following
linear system of equations ((I + 1)× J equations and unknowns) is obtained:

J∑

i=1

bihik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)xls

]
+

I∑
p=1

J∑

i=1

wiphik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)xlsxps

]

=
J∑

i=1

hik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)xlsdis

]
; k = 1, . . . , J ; l = 1, . . . , I

J∑

i=1

bihik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)

]
+

I∑
p=1

J∑

i=1

wiphik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)xps

]

=
J∑

i=1

hik

[
S∑

s=1

f ′k(d̄ks)f ′i(d̄is)dis

]
; k = 1, . . . , J.

(5)
where bi is the ith component of the bias vector and wip is the weight connecting
the output i and the input p. Therefore, the unique solution (except for degen-
erated systems) of the proposed minimization problem in (4) can be achieved by
solving the system of equations in (5) for the variables wip and bi; i = 1, . . . , J ;
p = 1, . . . , I.

3 Proposed algorithms

In this work two algorithms for the supervised learning of multilayer feedforward
neural networks are proposed. These methods are based on the results obtained
in the previous section for one-layer neural networks. Consider the feedforward
multilayer neural network in figure 2. It is composed of L layers where each
layer l contains Nl neurons. The output of neuron i in layer l, yl

i, is determined
by the activation zl

i, defined as the weighted sum of the outputs coming from
the neurons in the previous layer, and an activation function f l

i . Specifically,
y0 = (y0

1 , . . . , y0
N0

)T is the input vector of the network.

W 1 , b1
+

+

+

...
...

y 1z 1

fL(z L)

+

+

...y 0
y L

z L

f1(z 1)

...

. . .

y L-1

1
1

W L , bL

Fig. 2. Feedforward multilayer neural network and nomenclature employed.

3.1 Initialization method

The result presented in lemma 1 can be used to measure alternatively the error
before the nonlinear functions of each layer in the multilayer feedforward neural
network presented in figure 2. In this context, the input of the one-layer neural
network (x) will correspond to the output of the previous layer. In addition, it
is necessary to obtain a result that allows to backpropagate the error from the
output (before the activation function) of layer l to the output of the previous
layer (l − 1). This result is presented in the following lemma.

Lemma 2. Let dl−1,yl−1, d̄l, zl be the desired signals and corresponding output
signals of layers l and l − 1, Wl and bl be the fixed weight matrix and the bias
vector. Minimization of the weighted MSE between d̄l and zl at the output of the
linear layer is equivalent to minimizing a weighted MSE between dl−1 and yl−1,
i.e., finding the constrained linear least squares solution for the optimal input
vector. Mathematically, this is given by

min
yl−1

E[(d̄l − zl)T Hl(d̄l − zl)] = min
yl−1

E[(dl−1 − yl−1)T WlT HlWl(dl−1 − yl−1)]

(6)

There are two different situations in the problem presented in the previous
lemma: a) if Nl ≥ Nl−1, then dl−1 = (WlT HlWl)−1WlT Hl(d̄l − bl) is the
unique weighted least squares solution for the overdetermined system of linear
equations (Wldl−1 + bl = d̄l); and b) if Nl < Nl−1, then the QR factorization
may be used to determine the minimum norm least squares solution for this
undetermined system of linear equations (Wldl−1 + bl = d̄l).

In both cases, given a desired signal d̄l, for the linear output zl of the layer
lth, it can translate as a desired signal dl−1 for the output (after the nonlinearity)
of the previous layer. Subsequently, this value can be backpropagate through the
nonlinearity as described in lemma 1. Thus, using lemma 1 and 2 the following
algorithm is proposed:

1 Given {(y0,dL
s), s = 1, . . . , S}, select random initial values for weights and

biases Wl, bl; l = 1, . . . , L.
2 Evaluate zl

s, yl
s; s = 1, . . . , S; l = 1, . . . , L; using y0

s, Wl and bl; l =
1, . . . , L.

3 Set Copt to the MSE between yL
s and dL

s . Set Wl
opt = Wl, bl

opt = bl;
l = 1, . . . , L.

4 Compute d̄L
s = (fL)−1(dL

s)∀s, as the desired signal for zL
s .

5 n = 1.
6 while n ≤ MaxIterations
7 for l = L− 1 downto 1
8 Compute d̄l

s = (f l)−1(dl
s)∀s, as the desired signal for zl

s.
9 Compute dl−1

s = (WlT Wl)−1WlT (d̄l
s−bl) as the desired signal for

yl−1
s (this is the case for the overdetermined case, for the undeter-

mined case, the minimum norm solution could be used).
10 end
11 for l = 1 to L
12 Optimize Wl and bl using the linear system of equations in (5),

using yl−1
s as input samples and d̄l

s as desired output samples.
13 Evaluate zl

s and yl
s using the new values of the weights and bias.

14 end
15 Evaluate the value of C (the MSE between yL

s and dL
s).

16 If C < Copt then set Copt = C, Wl
opt = Wl, bl

opt = bl, l = 1, . . . , L.
17 n = n + 1.
18 end

Finally, an important issue to remark is that this algorithm is proposed as an
initialization method and not as a learning method because it has not a smooth
convergence to the solution. Instead, it jumps from one region to another of the
weight space.

3.2 Learning method

In this subsection a new learning method based on linear least squares is pre-
sented. In this case only the last layer of the network (L) is optimized using

linear least squares whereas the other layers are optimized using any standard
method. The proposed algorithm for a multilayer feedforward neural network is
as follows:

1 Select initial weights Wl, bl, ∀l, using an initialization method or randomly.
2 Evaluate the value of C0 (MSE between yL

s and dL
s) using the initial weights.

3 n = 1.
4 while n ≤ MaxIterations and (¬stop criterion 1)
5 Wl = Wl + ∆Wl; l = 1, . . . , L.
6 bl = bl + ∆bl; l = 1, . . . , L.
7 Evaluate the value of Cn (MSE between yL

s and dL
s).

8 If |Cn − Cn−1| < λ then
9 while (¬stop criterion 2)
10 Wl = Wl + ∆Wl; l = 1, . . . , L− 1.
11 bl = bl + ∆bl; l = 1, . . . , L− 1.
12 Update WL and bL using the linear system of equations in (5).
13 end
14 end if
15 end

The method works as follows: in the first phase (first epochs of training), all
layers of the network are updated using any standard learning rule (steps 5 and
6). In the second stage, when the obtained decrement of the error is small (step
8), then the update procedure switches to the hybrid approach. Thus, WL of
the network is optimally obtained using linear least squares (step 12) while Wl;
l = 1, . . . , L − 1 is still updated using the standard learning method (steps 10
and 11).

4 Results

In this section, a comparative study between the proposed methods and standard
algorithms is presented. In order to accomplish the study, several nonlinear sys-
tem identification data sets were employed. However, due to space restrictions,
only the results obtained for one of the data sets are shown. The data employed
in this paper is the time series from the K.U. Leuven prediction competition4

which was part of the International Workshop on Advanced Black-Box Tech-
niques for Nonlinear Modeling in 1998 [9]. The data were generated from a com-
puter simulated 5-scroll attractor, resulting from a generalized Chua’s circuit,
and it consists of 2000 samples. In this work, the desired signal was normalized
in the interval [0.05, 0.95]. The time series is shown in figure 3(a). The topology
employed in the following experiments was 6-7-1 though other topologies were
used to obtain a similar behaviour. Also, logistic and linear functions were used
in the processing elements (PEs) of the hidden and output layer, respectively.
For all the experiments a Monte Carlo simulation, using 100 different initial
random weights sets, was carried out.
4 ftp://ftp.esat.kuleuven.ac.be/pub/sista/suykens/workshop/ datacomp.dat

4.1 Initialization method

In this subsection, the results for the initialization method (section 3.1) are pre-
sented. In this case, the backpropagation method was used to train the network
using as initial weights either random values or those obtained by the proposed
initialization method (using 3 iterations of the algorithm). In the former case
the network was trained during 4000 epochs while in the latter only during 2000
epochs. Figure 3 shows the results obtained in the 100 simulations. Figure 3(b)
contains the histogram of the errors using only the initialization method. More-
over, figures 3(c) and 3(d) contain, respectively, the histogram of the errors,
in the last epoch of training, for the backpropagation algorithm using random
weights and the initial weights obtained by the initialization method (LS).

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time index
0 0.01 0.02 0.03 0.04 0.05

0

10

20

30

40

50

60

MSE
PD

F

1 2 3 4

x 10
−4

0

5

10

15

MSE

PD
F

1 2 3 4

x 10
−4

0

10

20

30

40

50

60

MSE

PD
F

(a) (b)

(c) (d)

Fig. 3. (a) Time serie of the K.U. Leuven competition and histogram of the final MSE
using (b) the initialization method, (c) backpropagation and (d) LS+backpropagation.

4.2 Learning method

In this subsection, a comparative study between the proposed hybrid learning
method (section 3.2) and the scaled conjugate gradient method (SCG) [10] is
presented. In order to accomplish a fair comparison, the hybrid method employed
also the SCG for weights and biases update in steps 5, 6, 10 and 11. In all the
simulations (100) the initial weights employed by both algorithms (SCG and
the hybrid method) were the same, therefore they started at identical initial
conditions. The results obtained for this time series are shown in figure 4. Figures
4(a) and 4(b) present the learning curves of the Monte Carlo simulation for the
SCG and the proposed method, respectively. As it can be seen, the proposed
learning scheme obtains a faster convergence to the solution than the standard
SCG method.

5 Conclusions

In this paper new algorithms for the initialization and supervised learning of
the parameters of a feedforward neural network were presented. The proposed

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

Epoch

MS
E

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

Epoch

MS
E

(a)

(b)

Fig. 4. Learning curves for (a) the SCG algorithm and (b) the proposed hybrid method.

algorithms are based on linear least squares for the independent optimization
of at least one layer of the network. An advantage of these methods is that the
number of epochs needed to achieve a good solution is decreased as a consequence
of the dimensionality reduction of the effective search space for the non-linear
algorithm. The application to benchmark data confirmed the good performance
of the proposed methods.

6 Acknowledgements

This work is partially supported by NSF grant ECS-9900394 and the Xunta de
Galicia (project PGIDT-01PXI10503PR).

References

1. Battiti, R.: First and second order methods for learning: Between steepest descent
and newton’s method. Neural Computation 4 (1992) 141–166

2. Buntine, W.L., Weigend, A.S.: Computing second derivatives in feed-forward net-
works: A review. IEEE Trans. on Neural Networks 5 (1993) 480–488

3. Almeida, L.B., Langlois, T., Amaral, J.D., Plakhov, A.: 6. In: Parameter adapta-
tion in stochastic optimization. Cambridge University Press (1999) 111–134

4. Schraudolph, N.N.: Fast curvature matrix-vector products for second order gradi-
ent descent. Neural Computation 14 (2002) 1723–1738

5. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights. Proc. of the Int. Joint Conference
on Neural Networks 3 (1990) 21–26

6. Drago, G., Ridella, S.: Statistically controlled activation weight initialization
(SCAWI). IEEE Trans. on Neural Networks 3 (1992) 899–905

7. Biegler-Konig, F., Barnmann, F.: A learning algorithm for multilayered neural
networks based on linear least squares problems. Neural Networks 6 (1993) 127–
131

8. Yam, Y., Chow, T.: A new method in determining the initial weights of feedforward
neural networks. Neurocomputing 16 (1997) 23–32

9. Suykens, J., Vandewalle, J., eds.: Nonlinear Modeling: advanced black-box tech-
niques. Kluwer Academic Publishers, Boston (1998)

10. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6 (1993) 525–533

