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ABSTRACT 
 
Principal Components Analysis (PCA) being the most 
optimal linear mapper in Least-Squares (LS) sense has 
been predominantly used in subspace-based signal 
processing methods. In system identification problem, 
optimal subspace projections must span the joint space of 
the input and output of the unknown system. In this 
scenario, subspaces determined by the principal 
components of the input or the desired alone do not 
embed key information, which lies in the joint space. In 
this paper, we first propose a hybrid subspace projection 
method that finds optimal projections in the joint space. 
The concepts behind this method are firmly rooted in 
statistical theory. We then derive adaptive learning 
algorithms to estimate the subspace projections. Finally, 
we show the superiority of the new framework in solving 
a system identification problem in noisy environment. 
 

1. INTRODUCTION 
 
In vector-space methods of signal processing, linear 
transformations play an important role. Linear 
transformations may be defined as the projection of 
vector-valued signals into lower-dimensional subspaces of 
the original data space [1]. Subspace projections play an 
important role in the system identification problem with 
noisy data as the noise blended in the signal can be 
reduced substantially under some constraints [2]. Principal 
Components Analysis (PCA), which maximally preserves 
the data variance, has been widely adopted as a major 
subspace projection method. However, in the problem of 
system identification, the underlying system parameters 
lie in the joint space of the input and desired signals. 
PCA, due to its very nature, cannot effectively utilize the 
information in joint spaces. 

The subspace method (or regularization method in 
statistics) has been a critical issue in statistics. Many 
studies in statistics have formed various methods for 
multivariate regression to overcome the “collinearity” 
problem among input variables. Regularized regression 
methods such as Partial Least Squares (PLS), Ridge 
Regression (RR), and PCA are well known in statistics 

literature [3]. Continuum Regression (CR), introduced by 
Stone and Brooks [4], embraces Ordinary Least Squares 
(OLS), PLS, and PCA by blending their criteria. 
Therefore, the desirable regularization can be one of OLS, 
PLS, and PCA or a combination of them. The problem of 
system identification studied in this paper is similar to 
regression in statistics; hence, we may be able to utilize 
statistical regularization methods to design improved 
subspace methods. 

In this paper, we propose a hybrid criterion function 
for subspace projection similar to CR, and develop the 
rules to estimate the projection matrix. We first present a 
gradient-based method and then improve the speed of 
convergence by designing a fixed-point type algorithm. 
We then solve the system identification problem using the 
new framework and proposed algorithms. 
 
2. REVIEW OF CONTINUUM REGRESSION (CR) 

 
In this section, we briefly summarize the criterion and the 
procedure of CR. Let the data be given by an input matrix 
X (n x p) and a matrix of desired responses d (n x m). 
Here, we assume m equal to 1 for simplicity. Extension to 
multivariate outputs can be found in [5]. Both X and d are 
normalized to have zero column means. In [4], the 
criterion is, 

1,))(())((),(
1

12 ==
−

− wJ TT α
α

α XwXwdXww     (1) 

where, , and α is a real number in the range 0 < 
α < 1. The special cases are α = 0 (OLS), α = 1/2 (PLS), 
and α = 1 (PCR). If we introduce the new matrix, 
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then, (1) can be rewritten as, 
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Thus, given α, the projection weight vector w is 
constructed to maximize J(w). After finding the first 
weight vector, the successive ones are computed such that 
weight vectors are orthogonal to each other. 
 



3. HYBRID CRITERION FUNCTION 
 
We build the criterion similar to CR in (3) as, 
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where λ is a real number in the range 0 ≤ λ ≤ 1. This 
criterion covers the continuous range between PLS (λ = 1) 
and PCA (λ = 1), whereas CR covers OLS, PLS and PCA. 
Since we are only interested in the case when subspace 
projection is necessary, incorporation of OLS can be 
omitted. To include constraint of ||w||=1 in the 
unconstrained criterion, a modified criterion , 
which is invariant to scaling of w, can be rewritten as,  
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Since log is a monotonically increasing, the criterion can 
also be rewritten as, 

)log()log()1()log(2)),(ˆlog( wwRwwpww TTTJ −−+= λλλ
           (6) 
We seek to maximize this criterion for 0 ≤ λ ≤ 1. To select 
the best value of λ, cross-validation or other validation 
methods can be utilized [6]. 
 

4. LEARNING ALGORITHMS 
 
4.1. Gradient learning algorithm 
 
The gradient in terms of the weight vector is, 
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Using gradient-ascent, the weight vector can be updated 
as 
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where η > 0 is a small learning rate. To compute the 
gradient, we need to know R and p that can be simply 
estimated from samples.  

To find M such orthogonal weight vectors, where M 
is the desired dimension of the subspace. To find each 
weight vector, update rules (7) and (8) are applied on the 
residuals of input from the projection output in previous 
step (deflation procedure). Note that R and p need to be 
recomputed in each step. Table 1 summarizes the 
procedure to construct the projection weight vectors. 
 
4.2. Fixed-point learning algorithm 
 
The gradient method possesses a couple of defects; the 
speed of the convergence is slow, and the performance 
depends on the choice of the learning rate.  Like all 
gradient-based methods, a finite set of step-sizes restricted 
by an upper bound exists for guaranteed convergence.  
 

X ~ input matrix 
d ~ desired response vector  
M ~ dimension of projected variable (latent variable)  
K ~ number of iterations 
Normalize X and d. 
Given λ, 
For k = 1,…,K 
      X0 = X 
      For m = 1,…,M 
            Compute R and p from samples. 
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      end 
end 

Table 1. Gradient hybrid subspace learning algorithm. 
 
However, this step-size upper bound is data dependent 
which makes it unwieldy to utilize in any practical 
applications. Recently fixed-point algorithms have been 
proposed for PCA that were shown to converge faster 
than gradient methods [7]. Motivated by the effectiveness 
of the fixed-point PCA rules, we derived the fixed-point 
version of the hybrid subspace learning algorithm. The 
stationary point of (7) is given by equating the gradient to 
zero.  

Assuming that ||w||=1, we can rearrange the terms as, 
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Let the weight vector w(k) be the estimation of the first 
projection direction at iteration k. Then the estimate of the 
weight vector at iteration index k+1 is, 











 −
+=+

)()(
)()1(

)(
)1(

kk
k

k
k

TT Rww
Rw

pw
pw λλ      (10) 

where, w(k)Tw(k) = 1. It can be shown using the principles 
outlined in [7] and [8] that the algorithm in (10) will enter 
a limit cycle (near convergence) resulting in the 
oscillation of w between two vectors. To remove the 
oscillation behavior of weight vector when the 
convergence is reached, we can balance the previous 
value of the weights with the new correction as shown in 
[2], 
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where 0 < T < 1. The convergence rate is affected by T, 
which produces a tradeoff between the convergence speed 
and the accuracy. The overall procedure for finding 
subsequent projection weight vectors is the same as the 
gradient algorithm depicted in table 1. Only the equation 
(8) in the table is changed with (11). 

x(t) d(t) Target filter

Subspace
projectionn(t) + d(t) 

+
-Adaptive

filter +Reconstruction We now investigate the convergence characteristics 
of the fixed-point update rule. The ordinary differential 
equation equivalent to (11) is, 
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Then, we can state the following theorem; 
 
Theorem 1: The norm of the weight vector, ||w(t)||2 
converges to 1 as  t → ∞.  
Proof: Multiplying from the left by  on both sides 
of (12), we get, 
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From the above equation, it is easy to see that, 
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The above ODE can be easily solved as, 
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where denotes the initial weight vector. As t → ∞, 
the norm converges to unity. This completes the proof.  
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Theorem 2: The fixed-point update equation converges to 
a stable stationary point in the Lyapunov stability sense if 
1<||w(0)||2 < ∞. 
Proof: Suppose we choose a positive definite Lyapunov 
function as L(t) = w(t)Tw(t). Then, the ∂L(t)/∂t becomes, 
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∂L(t)/∂t ≤ 0 for all t only if ||w(t)||2 → 1. But, from 
theorem 1, we know that the norm is either a 
monotonically increasing or decreasing function with 
unity being the stationary point. Therefore, if 1 < ||w(0)||2 

< ∞, then, ∂L(t)/∂t ≤ 0  for all t, and eventually when  
||w(t)||2 → 1 as t → ∞, L(t) becomes zero. 
 

The complete proof of the convergence of the fixed-
point update equation will be present in another work. 
 

5. EXPERIMENTS 
 
We will present a system identification problem in the 

Figure 1. The structure of the system identification 
example with subspace projection and reconstruction. The 
adaptive filter with reconstructed signal is the estimation 
of the target filter. 
 

0 0.2 0.4 0.6 0.8 1

1.78

1.8

1.82

1.84
Euclidean distance between target and estiamation filter

λ

di
st

an
ce

 
Figure 2. Euclidean distance between a target filter’s 
coefficient vector and an estimated filter’s over 0 ≤ λ ≤ 1. 
 
presence of noise. Traditional MSE-based techniques fail 
because of the presence of noise in the data. Subspace 
algorithms on the other hand can find optimal projections 
that can suppress the noise leading to more accurate 
identification. A continuous signal comprising of three 
sinusoidal components was generated as x(t) = c1sin(2πf1t) 
+c2sin(2πf2t) + c3sin(2πf3t), where f1 is 10Hz, f2 is 50Hz, 
and f3 is 100Hz, respectively. The sampling rate was 
1kHz. The coefficients c1, c2 and c3 can be set arbitrary 
(e.g. c1 = c2 = c3 = 1 in our experiment). This signal was 
filtered through a real-valued FIR filter with 10-taps 
(target filter) to generate the desired response signal. Then 
white Gaussian noise was added to x(t) to produce the 
noisy data. One thousand 50-dimensional vectors were 
derived out of this using a tap-delay line to create an input 
matrix with dimension of 1000×50. The subspace 
dimension was chosen as 6 (as there were 3 sinusoids). 
Then, the reconstruction matrix, which is equal to the 
transpose of a subspace matrix, linearly combined the 
subspace signal to form the reconstructed signal. Note that 
the reconstructed signal contains less noise due to the 
subspace projection. The reconstructed signal was then 
used as an input to a 10-tap adaptive filter to estimate the 
target filter. The overall architecture is depicted in Fig. 1. 
In simulation, we first trained a subspace projection 
matrix  
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Figure 3. The convergence of the L2 norm of subspace 
projection weight vector.  
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Figure 4. The comparison of the convergence speed 
between the fixed-point with T as 0.9, and the gradient 
rule with learning rate as 0.1, 0.25, and 0.4, respectively. 

using the two proposed algorithms for 50 epochs, and 
then trained an adaptive filter by LMS. 

First, the Euclidean distances between the target filter 
evaluated as shown in Fig. 2. The results were obtained 
from average of 50 Monte Carlo simulations. The best 
estimation result was observed when λ was approximately 
0.26. This indicates that we can estimate the target filter 
more accurately using hybrid subspace projection than 
PCA. Next, we verify that L2 norm of the weight vector 
converges to 1. The experimental results of ||w(t)||2 for T = 
0.3, as t increases, are plotted in Fig. 3, and compared 
with analytically computed values from (15). As a result, 
two convergence curves from experimental and analytical 
computations are very similar to each other. Finally, the 
convergence speed between the fixed-point and the 
gradient rule were compared when λ = 0 as illustrated in 
Fig. 4. The projection weight vector converges to the 
eigenvector of the input correlation matrix in this case. 
The absolute value of cosθ, where θ is the angle between 
the actual eigenvector and the weight vector, was 
computed over iterations. It shows that the fixed-point 
rule converges faster when a learning rate was less than 
0.4.  

According to the experimental results, it can be stated 
that there exists a better linear subspace projection than 
PCA if we exploit the desired response. 
 

6. DISCUSSIONS 
 

We have presented a hybrid subspace projection 
framework that effectively uses information in the joint 
space of a pair of signals. The proposed cost function 
included PLS and PCA as special cases. We then 
proposed gradient as well as fixed-point type algorithm to 
maximize the hybrid cost function. In order to verify the 
power of this hybrid framework, we performed a system 
identification experiment in noisy environment. Our 
results showed that the new approach has better noise 
rejection capability when compared with the traditional 
PCA based subspace methods.  

The proposed algorithm may be useful for the pattern 
recognition or signal detection problem. In that case, we 
might need to consider how to manipulate the qualitative 
desired response (not quantitative) to compute the cross-
validation vector, p in (5). Future studies will cover this 
problem. 
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