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ABSTRACT

We consider signal processing methods for phased-array magnetic
resonance imaging (MRI). A theoretical description of a phased-
array MRI data model is presented and three image reconstruction
algorithms are proposed to estimate the effective image pixels. An
analysis is provided to show how the new algorithms compare to
conventional reconstruction methods.

1. INTRODUCTION

The development of MRI was sparked in the early 1950’s when
Bloch and Purcell were awarded the Nobel Prize for their discov-
ery of nuclear magnetic resonance. The idea of using multiple re-
ceiver coils, orphased-arraycoils, for MRI is about a decade old.
The first implementation of a phased-array MR imaging system
is probably due to Roemer et al., but the ideas of using multiple
detectors for MRI can be traced back to the late 1980’s. A good
summary of this technology during the last ten years is provided in
the review paper [1]. Recently, a substantial body of research has
focussed on sophisticated techniques for phase encoding together
with the use of gradient coils (with the primary aim of increasing
the imaging speed). This work includes thesensitivity encoding
for fast MRI(SENSE) technique [2] andSimultaneous Acquisition
of Spatial Harmonics (SMASH) imaging[3]. Owing to the last
decade’s intensive research on the topic, phased-array MR imaging
is now becoming a mature field and arrays with up to 16 elements
have been designed and used for imaging experiments [4].

In principle, with phased-array technology, an increase in
imaging speed equal to the number of parallel coils can be
achieved. However, the use of large coil arrays imposes a number
of difficulties, in particular for high field strengths. Most impor-
tantly, since the coil sensitivities are typically unknown variables
(which are very difficult to model for high magnetic fields), opti-
mal and artifact-free image reconstruction is a challenge. The most
commonly used method for image reconstruction is the so-called
“sum-of-squares” (SoS) method. However, it is not optimal; in
particular, it introduces bias in the estimated image.

A number of somewhat more sophisticated techniques for im-
age reconstruction with phased-array coils have appeared during
the last decade. For example, as an alternative to the sum-of-
squares reconstruction, Debbins et al. [5] suggested to add the im-
agescoherentlyafter their relative phase was properly adjusted.
Bydder et al. [6] proposed a method that attempted to estimate the
coil sensitivities from the image; the resulting image has somewhat
less variance than the SoS reconstruction, however, it may still suf-
fer from bias. Kellman and McVeigh [7] proposed a method that
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can use the degrees of freedom inherent to the phased array for
ghost artifact cancellation. Another more sophisticated technique
was presented by Walsh et al. [8] who used adaptive filters to im-
prove the signal-to-noise ratio (SNR) in the image.

In this paper, we study the reconstruction problem from both
least-squares and maximum-likelihood points of view. We also
incorporate prior knowledge of the coil sensitivities via a Bayesian
framework. This priori knowledge can obtained via, for example,
calibration or electromagnetic modeling.

2. THE PHASED-ARRAY MRI DATA MODEL

A basic MRI signal model can be derived from the Bloch equa-
tion [9, 10]. Let�, �, � be orthogonal unit vectors that span the
Cartesian coordinate system under consideration, and suppose that
a suitable gradient magnetic field is applied to enable selective ex-
citation of a thin slice parallel to the (���)-plane, say at� � ��.
At a given coordinate�� �� �� and time�, let����� and����� be
the strength of the external magnetic field along the� and� axes
and define
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Then, for a given receiver coil, the noise-free received time-
domain signal can be written
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where� is a constant, and
��� �� is proportional to the “trans-
verse magnetization” (which is essentially the quantity of inter-
est in the imaging),���� �� is the sensitivity of the coil (i.e.,
the “antenna beampattern”). Eq. (2) shows that the received sig-
nal at time� is essentially equal to the 2D Fourier transform of
���� ��
��� �� evaluated at������ �����. Hence, by choosing an
appropriate external time-varying magnetic field����� and�����,
the 2D Fourier transform of���� ��
��� �� can be sampled at sev-
eral points���� ��� and the MR image can be obtained via inverse
Fourier transform.

In the phased-array MRI data model case, let� be an
 -
vector that contains the image pixels of interest, suppose that the
�-space is sampled at� points and let us arrange these measured
points in an
 -vector�� after the inverse Fourier transform. Also,
let �� be an
 -vector of coil sensitivities associated with the�th
coil and the
 pixels. Let us assume that������� is constant
throughout a small region� consisting of
 pixels in the image,
i.e., that
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For� � � of interest, the data model is
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where� �
�
�� � � � �	�

�
with �� being the measurement of

the��
 coil, and� is a “local” noise which is zero-mean, indepen-
dent between two different points in space domain, but possibly
correlated between the receiver coils. For known�, � in (4) can be
determined via least-squares, whereas for unknown�, the problem
becomes more complicated.

3. METHODS

3.1. Sum-of-Squares (SoS) Reconstruction

With the SoS method, the data is first pre-whitened by	����

to account for the noise coloration, and thereafter each measured
pixel is taken as an estimate of the coil sensitivity. For simplic-
ity, we neglect the noise coloration	 in our description. Then the
reconstructed pixel is obtained via
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Clearly, if the noise level goes to zero the SoS-estimate converges
to ����� �

�		�
��� �����������

� which is in generalnot equal
to ����. Therefore, SoS reconstruction yields in general severely
biased reconstructions,even in the noise-free case. Unless����
is constant throughout the image (which is certainlynot the case
in practice), this bias depends on the pixel number� and hence it
cannot be corrected for if���� is unknown.

3.2. Singular Value Decomposition Reconstruction

Singular value decomposition (SVD) is widely implemented in
signal processing applications. In ideal noise-free environment,
the left singular vector and the right singular vector of� is the de-
sired pixel vector� and the coil sensitivity vector�. However, the
introduction of noise increases the rank of the matrix� to greater
than one, and hence the left singular vector and the right singular
vector corresponding to the maximum singular value will yield the
least-squares estimate of� and�. In the case of rank��� � ��,
the pixel vector is estimated as
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and�� � �� � � � � � �	� , 
� is the
 dimensional left singular
vector of�; furthermore,�� is the�� dimensional right singular
vector (� � �� � � � � ��). There is a scaling ambiguity in the sense
that no unique�� satisfies the decomposition. For instance, we can
use the norm of the SoS solution to scale�� to recover the image
contrast in different local regions.

3.3. Coil-Average Reconstruction

The key problem to extract� from each column of signal�� is to
“cancel” the coil sensitivity��. The local constancy of�� con-
notes�� � ���� � � �� � � � � ��. Therefore the normalization
of �� eliminates the coil sensitivity�� in each coil, and the��
average gives the normalized�� via
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For this method, the SoS norm is also used to normalize��.

3.4. Bayesian Reconstruction

Under the assumptions made on�, the columns of the matrix�
are (conditioned on� and�) independent and circularly symmetric
Gaussian with mean��� and covariance	. Hence the p.d.f. of�
is equal to
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Suppose that the prior knowledge of the coil sensitivities� can
be described by assuming that� is Gaussian with mean� and
covariance�. Then the p.d.f. of� is given by
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From Bayesian theorem, the p.d.f of� is expressed as
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The incorporation ofa priori knowledge of model parameters
via Bayesian statistics has a number of the distinct advantages.
For example, the degree of uncertainty about� can be easily intro-
duced as a model parameter�. In the extreme case that there is a
complete lack ofa priori information about�, we can take� arbi-
trary and� very large (i.e., letting it grow without bound). In the
other extreme case when we have full knowledge of the parameter
�, we can simply take� equal to its known value and set� � �

(in this case, the p.d.f. in (9) effectively reduces to a Dirac-like
impulse function).

The above integral result is a product of an exponential func-

tion multiplied with an determinant, where both have a	�
�
� � �

part. It appears not to be directly straightforward to maximize the
total p.d.f. with respect to�, and as an approximation we simply
minimize the sum of the two norms inside the integral in (10) with
respect to both the parameters� and�. For this purpose, we use a
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where the cost function� , the pixel vector� and the coil sensitiv-
ity � are related by
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where� stands for the Kronecker product and

��� � �	�
�
� ���� �� �� � �	�

�
� � ��

�
��
��
...
�	�

�
��

�
 � � �	�
�
� �� ��� ��� � �

�
�

���

(14)

4. NUMERICAL RESULTS

In order to compare the performance of the above four algorithms,
we assume for simplicity that the pixels� in each column of��
have the same SNR

�� � ����� ��� (15)

where�� is the zero-mean, independent Gaussian noise with the
same covariance matrix for the different coils.
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 The MRI signals detected by four coils with
known varied coil sensitivities in a local region are simulated. The
signal-to-error-ratio (SER) and signal-to-noise-ratio (SNR) are de-
fined as
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where� and �� denote the true pixel sequence and the estimated
one with ����� � � and ������ � �, and��� denotes the identical
noise variance in each coil. By using simulated data we can con-
struct a fully controlled experiment. Fig. 1 shows the SER against
the SNR for the four algorithms in this specified region. SoS has
relatively worse SER compared to the other three because it in-
troduces positive bias to the estimated pixels. The SVD method
has a gain of 7 dB on SER compared to SoS when SNR is 10dB.
However, SVD is worse than SoS when the SNR is less than 4dB.
It shows that�� is sensitive to the noise interference. The Coil-
Average algorithm has a general 12dB SER gain beyond SoS, be-
cause average itself means a gain of SER. In Bayesian Reconstruc-
tion algorithm, we choose the SoS solution as the initial pixel esti-
mate�� and the coil sensitivity estimate�� in the first iteration as the
� and the identity matrix as�. It demonstrates the highest SER
among the four algorithms. The SER is 7dB and 15dB higher than
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Fig. 1. Signal-to-error-ratio (SER) of the Bayesian, SVD, Coil-
Average, and SoS, along signal-to-noise-ratio (SNR).

(a) half moon cylinder
phantom.

(b) Photograph of phased
array coil, transmit coil,
and cabling.

Fig. 2. Phantom image and its experimental devices.

SoS with SNR at 0dB and 15dB, respectively. It is because of the
prior information of coil sensitivity, the recursive approach and the
good initial estimate that the Bayesian algorithm is promising.

������� � 
 For real data, the signal model in (4) is jus-
tified by the experimental phantom data in Fig. 2(a) (only one
coil is presented due to the space limitation). It consists of a
cat spinal cord in one pipe and another oil-filled pipe for refer-
ence, both inside a water-filled cylinder. The data is collected by a
four-coil phased array (TR=1000ms, TE=15ms, FOV=10
 5cm,
matrix=256
128, slice thickness=2mm,sweep width=26khz, 1
average) shown in Fig. 2(b) [11]. Fig. 3 shows the histogram of
the ratio of the maximum singular value to the mean of the smaller
three for the phantom data. In noise-free environment, all ratio val-
ues should be infinite. In the real phantom data case, most ratios
range from 30 to 120 showing that the singularity assumption of
the signal matrix� is well satisfied within reasonable numerical
accuracy.
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 We also use our algorithms on data from a
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Fig. 3. Histogram of singular value ratio for phantom data.

(a) Coil 1 (b) Coil 2 (c) Coil 3 (d) Coil 4

Fig. 4. Vivo sagittalimages of a cat spinal cord from four coils.

cat spinal cord with the same devices used in phantom data. Fig. 4
shows the images from four coils before reconstruction and Fig. 5
shows the reconstructed results by the four algorithms. In this case
we do not pursue statistical analysis of the images due to the diffi-
culties associated with finding both a proper reference image and
the valuable image parts to judge the image quality.

5. CONCLUDING REMARKS

In summary, a data model for the multiple phased-array coils is
set up based on the assumption of the local constancy of coil sen-
sitivities. The model is justified by experimental data. Three new
image reconstruction methods, namely SVD Reconstruction, Coil-
Average Reconstruction and Bayesian Reconstruction, are com-
pared to SoS. A computer simulation was implemented to com-
pare the SER against the SNR of the above four methods. The
Bayesian method indicates the highest SER while SoS shows the
worst one using a known simulated true image. Further work is
needed and will be performed in order to improve the performance
of the methods.

(a) (b) (c) (d)

Fig. 5. Reconstruction images of cat spinal cord by methods of (a)
Bayesian, (b) SVD, (c) Coil-Average and (d) SoS.
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