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Abstract: The recent sprout in the application of swarm intelligence to problems in varied 
fields has proved that this visionary technology is becoming practical. However, the 
organization and coordination of swarms is either heuristic or based on centralized 
approaches. In this paper, we propose a principled decentralized approach based on an 
information theoretic interaction principle to self-organize swarms. The goal of our 
algorithm is to spread the robots uniformly over a circular region using entropy 
maximization while guiding the collective towards a target. This algorithm minimizes the 
cost of the robots, since it is requires minimal hardware for its operation. Copyright © 
2003 IFAC 
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1. INTRODUCTION 

 
Swarm intelligence is biologically inspired by insect 
societies like ants and termites, which produce 
complex collective behaviour from the interactions 
of many simple individuals (Kube and Bonabeau, 
2000; Resnick, 1997). The application of swarms in 
versatile fields like oceanographic sampling (Turner 
and Turner, 1998), communication networks (White 
and Pagurek, 1998), material transportation in 
hazardous zones (Genovese, et al., 1992) and 
planetary missions (Miller, 1990) has made it a hot 
research field. 
 
Many researchers have attempted self-organization 
of swarms with a leader – follower strategy. But it is 
now widely accepted that decentralization is vital to 
swarms, since it brings robustness to the system. 
Some of the reasons for using a decentralized 
approach are: 
• Having a central controller may not be feasible 
in some tasks like mine sweeping, since the failure of 
the controller means failure of the whole system.  
• High swarm population would necessitate the 
controller to have extensive communication with 
agents.  

• The complexity of the controller will make it 
costlier than having many simple robots. 
 
Here we propose an information theoretic interaction 
(ITI) approach of implementing decentralized self-
organization of swarms. The theory of physically 
interpreting data samples in entropy estimation as 
information particles (IPs) and the interactions 
between data samples as information forces (IF) can 
be applied to swarms by considering each robot as an 
IP (Principe, et al., 2000). The application of ITI to 
self-organization of swarms decreases the complexity 
and hence the cost of the individual robots, since: 
• Each robot needs to have only a simple 
transmitter and receiver. The circuit complexity of 
the receiver does not increase with increasing the 
number of robots, since the signal from every robot 
has equal energy and is broadcasted to all the other 
robots. 
• Each robot need not know its own absolute 
position as well as the position of the other robots. 
 
The remainder of the paper is organized as follows. 
Section 2 briefly reviews the information theoretic 
interactions approach. Sections 3 and 4 describe the 
details of the information particle interaction 

     



algorithm for self-organization with simulation 
results. Section 5 provides a summary of our 
conclusions.  
 
 

2. INFORMATION PARTICLES 
 

The information particle interaction idea has been 
recently introduced (Principe, et al., 2000) and has 
been successfully utilized in many problems 
including independent component analysis, nonlinear 
principal components analysis, and SAR image 
feature extraction. The principle was generalized into 
a general particle interaction framework (Erdogmus, 
et al., 2002), which encompasses the original 
information particle interaction model for adaptation 
and self-organization as a special case corresponding 
to a specific choice of the particle potential 
functions. In this section, we will briefly describe the 
general particle interaction model for self-
organization. 
 
Renyi’s entropy is a parametric family described by 
(Renyi, 1970) 
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where X is a random variable with the designated 
marginal and joint probability density functions 
(pdf), and α is the order parameter. We start by 
writing the entropy definition in (1) in a different 
way, using the expectation operator.   
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Now, suppose that the particles {p1,…,pN}, 
correspond to the robot position coordinate vectors in 
the current application. For simplicity, assume we are 
dealing with single dimensional random variables 
(extension to multi-variable case is trivial). We 
assume that each particle emanates a potential field. 
If the potential field that is generated by each particle 
is v(ξ), we require this function to be continuous and 
differentiable (except possibly at the origin), and to 
satisfy the circular symmetry condition v(ξ) = v(||ξ||). 
With these definitions, we observe that the potential 
energy of particle pj due to particle pi is V(pj|pi) = 
v(pj-pi). The total potential energy of pj due to all the 
particles is then given by 

 
The Parzen window estimator (Parzen, 1967) for the 
pdf is evaluated using a kernel function (.)Σκ , 
where Σ is a parameter that controls the width of the 
kernel function.   
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In the multidimensional pdf estimation case, this can 
be a vector or the covariance matrix of the kernel 
function.  In general, we suggest using joint kernels 
of the type 
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where is the component of the input vector.  
We can now replace the expected value in (2) by the 
sample mean and obtain the following nonparametric 
estimator for Renyi’s entropy (Erdogmus et al, 
2002). 

ox tho

 

 ∑ ∑
=

−

=
Σ 













−

−
≈

N

j

N

i
ij

N
H

1

1

1
)(1log

1
1)(

α

αα κ
α

ppX  (5) 

 
This nonparametric estimator allows the designer to 
choose any entropy order α and any kernel function 

Σκ . For the special choices of quadratic entropy (α 
=2), and Gaussian kernels, (5) reduces to the 
estimator defined by Principe except for a change in 
kernel size (Principe et al, 2000).   
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It is interesting to point out that this definition is 
achieved without any sample approximations as in 
(5) due to the mathematical properties of the 
Gaussian kernel.  
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Defining the interaction force between these 
particles, in analogy to physics, as 
 

 
we obtain the total force acting on particle pj  
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Notice that the force applied to a particle by itself is 
zero. In the self-organizing context, since each agent 
is considered a particle, the gradient of the potential 
with respect to the particle position, which is called 
the interaction (information) force, can be 

     



immediately utilized as a command signal for self-
organization. In the present application, we assume 
that each robot in the swarm transmits an RF signal 
with certain amplitude and frequency. This signal is 
also coded in order to improve the robustness of the 
system under noise and hostile jamming. Explicitly, 
the potential field emanated by each particle is given 
by 
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Fig. 1. Empirical estimation and approximation of

threshold 
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which is a circularly symmetric function decreasing 
quadratically with distance. The fact that this 
potential function is physically realizable motivates 
its use in this application. It is possible to show that 
maximization of entropy in a fixed region can be 
achieved using the above formulation (Erdogmus, et 
al., 2002). The maximization of entropy over a fixed-
region leads to a uniform distribution of the particles 
(Principe, et al., 2000). 
 
 

3. SELF-ORGANIZATION ALGORITHM 
 

If every robot is considered as a particle, then the 
robots can distribute themselves uniformly over a 
certain region by maximizing their entropy. We take 
the simplest region, a circle, as the case for 
simulation of this algorithm. The circular region is 
commonly used in self-organizing swarms case 
studies. For example, Unsal uses an algorithm that 
spreads the robots uniformly over a circular region. 
However, this algorithm, quite restrictively, requires 
all the robots to know the absolute positions of every 
robot (Unsal and Bay, 1994). 
 
To spread robots uniformly over a circle of certain 
radius needs some controlling force at the boundary 
of the circle so that the robots remain within the 
circle. This is achieved by comparing the total 
potential field measured by the robot to a preset 
threshold, which is a function of the transmitted 
signal power, number of agents, and the desired 
radius. Since the determination of an analytical 
function for the threshold in terms of the mentioned 
parameters is involved (it requires solving a 
complicated optimization problem), the solution was 
found experimentally. For a given number of agents, 
the threshold was computed through Monte-Carlo 
simulations for unit-power transmitted signal and 
unit-radius. Assuming spherical signal propagation, 
it is simple to generalize the obtained result to 
various radius and transmitted signal power levels. 
An exponential curve is then fitted to this data to get 
a simple and generalized threshold function in terms 
of the signal power (A), number of agents (N), and 
the desired radius (r). The experimental data and the 
fitted curve are shown in Fig. 1. The generalized 
threshold function is found to be  
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In the figure, we can see that the variance of actual 
values from the approximation increases as the 
number of robots increase. This can be attributed to 
the fact that the simulation was run for the same 
number of iterations for any number of robots and 
hence the accuracy of the estimated thresholds 
decreases as the number of robots increase.  
 
For transmission and reception of signals, pseudo-
noise (PN) signals are used, since they offer a secure 
way of transmission and are robust to jamming. PN 
sequences used in CDMA based wireless 
communication must have low cross-correlation 
since the receiver must be able to de-spread only one 
particular PN sequence from many PN sequences for 
better reception of the desired signal. In this scenario, 
however, we require that the robots do not use 
different seeded PN sequences, because then, as the 
swarm size increases, hardware complexity of the 
receivers will also increase. Hence, all the robots 
must use the same PN sequence (with different 
phases) and autocorrelation property of the PN 
sequence assumes importance. The autocorrelation 
function of an m-sequence (Haykin, 1994) is constant 
at a very small value (-1/M, where M is the sequence 
period) for non-zero lags and is 1 at zero lag. Hence, 
they can be beneficially used in this application. 
Since every robot is at different distances from a 
particular robot, the received signal will have the 
same PN sequence arriving in different phase shifts. 
Then, when there are N robots, the received signal 
ri(t) at the ith robot can be written as  
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where Aik is the amplitude of the signal coming from 
robot k. For a spherical propagation model, we would 
have , where d2/ ikik dAA = ik is the distance between 
the ith and kth robots. Also, we let g(t) be the assumed 
PN sequence, which is common to all the robots. The 
phase ∆ik depends on the time-of-arrival of the signal, 
which is a function of the distance dik. 
 

     



If the PN sequence is g(t), then the decoded signal 
will be at a particular phase shift L of the PN 
sequence 
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Then, substituting the received signal in the above 
equation gives 
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The autocorrelation of the PN sequence, 
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Fig. 2. Trajectories of robots while spreading

themselves uniformly over a circle 
 
For the specific case of an m-sequence, 
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where M is the length of PN sequence and z is any 
integer. Then, the decoded received signal becomes 
as shown in (17), where j=1,2,….,N where N is the 
number of robots. Thus, a reasonable threshold can 
be set to get the amplitudes Aij, j=1,2,…,N. 
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The potential Vi for a particular robot is the sum of 
the received signal amplitudes Ajk from all other 
robots. 
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This is compared to the threshold calculated 
according to the desired radius to specify the sign on 
the direction of the information force (IF), which is 
the gradient of the potential. Approximating the 
discontinuous sign function with arctan, the 
expression for the IF for the ith robot becomes 
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The gradient of the potential with respect to the 
robot’s position pi is estimated from the 
measurements taken by a rectangular grid of receiver 
antennas (located on the robot) by a first-order 
difference approximation of the derivatives.  
 

This algorithm was simulated with the following 
specifications: 
 
Number of robots, N = 15 
Radius of the circle, r = 2 
Length of the maximum sequence, M = 127 
Number of antennas in the receiver array = 9 
Number of iterations = 1000 
Integration time step = 0.03 
 
The results are shown in the figure above, but many 
other simulations produced similar results. The 
circles show the initial position of robots, where they 
are randomly distributed. Stars depict the final 
position of robots where all the robots have spread 
themselves almost uniformly over a circle. It must be 
noted that the final positions of robots can differ 
depending on their initial positions. The uniformity 
of the distribution can be estimated from the variance 
of the nearest neighbour distances for each robot, 
which is 0.0031 for this simulation. The robots have 
spread slightly outside the circle due to the curve-
fitting approximation in the threshold. 
 
 

4. CONVERGING ON THE TARGET 
 
In addition to spreading, target guidance is also an 
important problem. Our approach to target guidance 
does not assume any beacon signal from the target 
(Parunak and Brueckner, 2001), since this is an 
unrealistic assumption in some applications like 
bombing or surveillance of a military target. Instead, 
two base stations are used to transmit direction 
information to all robots. 
 
Each base station is assumed to use a simple radar by 
which it decides whether the center of the circle in 
which the robots reside are to the left or right of the 
target line-of-sight (LOS) and accordingly changes 
the sign of the transmitted PN sequence. The base 
stations have their unique PN sequences in order to 
facilitate their distinguishing from each other and the 
other robots. For the robots, the amplitudes of the 
base station signals give the gradient information to 
calculate the IF towards the target while the sign of 

     



those signals change the direction of the IF towards 
the target depending on the region of the robots as 
depicted in Fig. 3. 

 
Fig. 3. Guiding of robots towards a target 
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Fig. 4. Target guidance of robots 

 
The results of the above guidance algorithm are 
shown in Fig. 4. It must be noted that the spreading 
of the robots and guidance towards the target occur 
simultaneously. This is due to the fact that the total 
IF experienced by each individual robot is a 
superposition of the forces due to inter-robot 
interactions and the interactions with the base 
stations. 
 
In summary, the following are the operations 
performed by every robot while tracking a target. 
 

1. From the received signal amplitudes at 
various antenna elements, find V and pV ∂∂ /  
due to the interaction of robots by decoding 
using the appropriate signature. 
2. Compare V with threshold and 
determine the direction of IF due to 
interaction of robots (see 13). 
3. By using the signature sequences of 
base stations, find the sign commands and 

 due to base stations. pV ∂∂ /
4. Rotate this gradient according to the 
signs to determine the direction of IF due to 
base stations. 
5. Superimposing IFs due to robots and 
base stations gives the total IF providing the 
direction in which the robot is moved. 

  
It is possible to use the same algorithm to track a 
moving target. In that case, the base stations need to 
continuously adjust their LOS to the target so that 
correct direction information is conveyed to the 
agents. 
 
 

5. CONCLUSION 
 
Research on swarm robots is increasing its popularity 
due to many possible applications. The focus is 
currently on designing effective and efficient self-
organizing algorithms that would lead the group of 
agents to accomplish a task collectively. This 
requires communication and cooperation between the 
individuals of the collective. 
 
In this paper, we have proposed a self-organizing and 
collective control principle based on particle 
interactions through a predefined interaction law. 
The approach is based on the recently developed 
particle interaction and information particle 
principles in adaptation. In this approach, each agent 
is considered an information particle, which 
emanates a potential field that allows communication 
with the other agents in the collective. The proposed 
self-organization (maximizing entropy over a 
circular region) and target tracking algorithms are 
tailored to be hardware efficient, in order to facilitate 
practical implementation of the proposed system, 

while maintaining the underlying information 
particle interaction principle. 
 
The optimisation problem addressed in this paper is 
similar to the famous sphere-packing problem in 
mathematics with the main difference being the 
formulation as a global cost function (entropy) 
optimization. In sphere packing, the circles packed 
optimally inside a bigger circle have equal size, 
while the final solution obtained with our solution 
achieves the same objective, but with slightly 
different sized circles. 
 
Currently, the use of PN sequences is proposed to 
introduce robustness to noise and immunity to hostile 
jamming. Future work will explore the performance 
of the proposed algorithms under such hostile 
operating conditions. 
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