
MODIFIED KALMAN FILTER BASED METHOD
FOR TRAINING STATE-RECURRENT

MULTILAYER PERCEPTRONS

Deniz Erdogmus1, Justin C. Sanchez2, Jose C. Principe1

Computational NeuroEngineering Laboratory,

1Electrical & Computer Engineering Department
2Biomedical Engineering Department

University of Florida, Gainesville, FL 32611.
[deniz,justin,principe]@cnel.ufl.edu

Abstract. Kalman filter based training algorithms for recurrent neural
networks provide a clever alternative to the standard backpropagation in
time. However, these algorithms do not take into account the optimization of
the hidden state variables of the recurrent network. In addition, their
formulation requires Jacobian evaluations over the entire network, adding to
their computational complexity. In this paper, we propose a spatial-temporal
extended Kalman filter algorithm for training recurrent neural network
weights and internal states. This new formulation also reduces the
computational complexity of Jacobian evaluations drastically by decoupling
the gradients of each layer. Monte Carlo comparisons with backpropagation
through time point out the robust and fast convergence of the algorithm.

INTRODUCTION

Neural network architectures have been successfully used in numerous

applications ranging from adaptive signal processing to system control [1,2]. The
celebrated backpropagation algorithm proposed by Rumelhart et al. [3] propelled
the research efforts on neural network topologies and training algorithms.
Backpropagation reduced the computational complexity of the steepest descent
training using the mean-square error (MSE) criterion for feedforward multilayer
perceptrons (MLP). Although the time information in signals can be brought in by
utilizing time-delay neural networks (TDNN) (which can be trained efficiently
using the standard static backpropagation algorithm) some applications require
large memory depths. The only way to achieve this with a TDNN is to increase the
length of the delay-line at the input, which introduces additional parameters. Large
networks suffer from the bias-variance dilemma which results in poor
generalization due to model overfitting [4]. To avoid this problem, we desire small
errors together with a small number of weights.

The memory shortcomings of the TDNN have motivated the use of recurrent
neural networks (RNN). The memory structure of the RNN is moved to the hidden
layer where additional parameters are added as the square of the number of hidden

nodes (as opposed to TDNN - #taps*#inputs*#hidden nodes). Since RNNs display
gradient dependencies over time, the standard backpropagation algorithm used for
MLPs cannot be used for optimizing RNN parameters. By unfolding the RNN to
form an equivalent feedforward network with replicated weights spanning the time
dependency, the algorithm called backpropagation through time (BPTT) is
applicable [5]. BPTT is not without problems itself. RNNs trained with BPTT
have difficulty learning time dependencies, since gradients tend to decay
exponentially due to the composite derivatives of the nonlinearities [6].
Computational and storage requirements are also demanding, since activations,
injected errors, and copies of the weights have to be computed and stored over a
trajectory.

In order to avoid the difficulties associated with BPTT, Kalman filter-based
learning algorithms have been proposed and investigated [7,8]. Singhal and Wu
were the first to propose this state estimation approach to determine the optimal
weights of an RNN [7]. They have demonstrated that in training feedforward
MLPs with this approach, the number of iterations required for convergence can be
decreased compared to the slow-converging backpropagation. One major
drawback of this original formulation was the increased computational complexity
per iteration; the evaluation of the Jacobian of the outputs with respect to all the
weights is already necessary in backpropagation, however, the Kalman filter
necessitates the inversion of matrices for the case of multiple outputs. Puskorius
and Feldkamp [8] extended the Kalman filter formulation to the training of RNNs.
They have successfully trained and utilized RNNs in various applications
including the adaptive control of nonlinear dynamical systems [9]. Puskorius and
Feldkamp aimed to reduce the computational complexity of the Kalman filter
training algorithm for RNNs by disregarding “the interdependence of mutually
exclusive groups of weights” [8]. Although these algorithms produce promising
results in terms of training RNNs treated like transfer functions, ignoring the
initial internal states of the hidden layer(s) as parameters to be optimized results in
suboptimal learning of the weights.

In this paper, we modify the current Kalman filter approach used to train RNNs
to take into account the optimization of this important parameter. This is achieved
by extending the state vector of the Kalman filter to include the optimal hidden
states as well as the weights of the RNN. Therefore, this new approach is called
the spatial-temporal extended Kalman filter (STEKF) training for RNNs. The
importance of the optimization of this hidden internal state comes from the fact
that recurrent networks are not merely feedforward input-output mappings. For
example, training for the RNN weights assuming zero initial hidden state would be
suboptimal, in general.

MODIFIED KALMAN FILTER FORMULATION

A state-recurrent neural network with a single hidden layer, as shown in Fig. 1,

is represented by the dynamical equations in (1). These equations can easily be

modified to account for multiple hidden layers by including the state update
equations for each layer.

212

1111
1)(

kkkk

kk
f

kkkk

byWy

byWxWy

+=

++=+ σ
 (1)

Figure 1. Fully-connected state-recurrent neural network

In (1), 1
kW , 2

kW , f
kW , 1

kb , 2
kb are the 1st layer, 2nd layer, and feedback weight

matrices and the 1st layer, and 2nd layer bias vectors, respectively. The input vector

sample (index k) to the network is xk, and the internal state vector is 1
ky . The

output of the RNN is yk. Each processing element (PE) of the hidden layer contains
the sigmoid-type nonlinearity denoted by σ (.). Our aim is to determine the optimal

weights and the initial internal state, 1
0y , of this network for a given s et of training

data)},(),...,,{(11 NN dxdx that minimizes the MSE between the network output
samples yk and the desired signal dk.

In the STEKF formulation we assume that the optimal parameters (including the
weights and the hidden states) to be estimated are the state variables of a
hypothetical dynamical system. Suppose that we collect all the optimal weights of
the RNN into a vector w*. Since the optimal solution for the weights is fixed, we
assume the dynamical relationship **

1 kk Iww =+ between values of the optimal
weights for consecutive time instances. On the other hand, the optimal internal
state vector of the hidden layer is updated with the nonlinear equation

)(*1*1**1*1
1 kk

f
kkkk byWxWy ++=+ σ , where all the weights assume their optimal

values. Assuming that the desired signal is a noisy measurement of the RNN
output evaluated using the optimal weights and the optimal initial internal state,
the output can be written as kkkkk vbyWd ++= *2*1*2 , where vk denotes the
measurement noise (the approximation error at the optimal solution). These
equations can be collected to give the following dynamical system

PE

PE

PE

W 1 W f

W 2

y 1 y

x

kkkkk

kk
f

kkkk

kk

vbyWdMappingOutput

byWxWy

Iww
Equationocess

++=

++=

=

+

+

*2*1*2

*1*1**1*1
1

**
1

:

)(
:Pr

σ (2)

Regarding the parameter optimization as a state estimation problem described by
the equations in (2) allows us to use the extended Kalman filter to update the
(optimal) weight estimates as well as the (optimal) hidden state. We summarize
this update algorithm below.

Algorithm:

1. Initialize all the weights 1
kW , 2

kW , f
kW , 1

kb , 2
kb and the internal state

1
ky to small random values. Initialize the Kalman gain matrix K (possibly

to all zeros). Initialize the optimal weight estimation error covariance
matrix P to diagonal matrix with relatively large values.

2. Select a schedule for annealing the covariance matrix Q for the
measurement noise vk. Start from a large diagonal matrix and decrease the
value as the iterations progress to a small value. Assume there exists a
process noise in the process equations as well. Anneal the covariance
matrix R of this process noise similarly. (Experience showed that
initializing P, Q, and R to values of the same order of magnitude boosts
convergence speed and helps avoid local minima.)

3. For each new training samp le (xk , dk) evaluate the Jacobian matrices of
the process and output equations with respect to the state variables of (2)
at the current estimates for the optimal weights and the internal state of
the RNN. These matrices are given by A and C shown in (3). Here

),(1ywσ denotes the second portion of the process equation and

),(1ywh denotes the output mapping in (2).

 ∂∂∂∂=

∂∂∂∂=

11

11

,
1

,

,
11

,
1

|)/(|)/(

|)/),((|)/),((
0

kkkk

kkkk

ywyw

ywyw

yhwhC

yywwyw
I

A σσ
 (3)

4. Evaluate the error for the new training sample, ek, and update the Kalman
gain matrix using the current Jacobian matrices.

RPKCIP

QCCPCPK

APAP

byWde

TT

T
kkkkk

+−=

+=

=

+−=

−

−−−

−

)(

)(

)(

1

212

 (4)

5. Update the estimates for the optimal weights and the internal state of the
RNN using the Kalman gain matrix and the current output error (In (5)

we select the rows of K corresponding to w into K1 and the rows
corresponding to y1 into K2).

eKbyWxWy

eKww

kk
f

kkkk

kk
21111

1

1
1

)(+++=

+=

+

+

σ
 (5)

6. Go to step 3 to process the next training sample.

Typically, Kalman filter training algorithms for RNNs utilize the first equation in
(2), ignoring the optimization of the internal state vector. The reasons for this are
two-fold:

• First, there is a tendency to interpret the recurrent networks as straight
input-output mappers (like a transfer function), in which case the initial
state is usually set to zero.

• Second, using the traditional Kalman formulation, one would include the
initial internal state of the hidden layer in the first equation of (2) along
with the other weights. Once the estimate for the optimal weights and this
initial state are updated, the entire training data set up to that point would
have to be passed through the recursive network to evaluate the current
RNN output with the new parameters. This would be computationally
infeasible for long training sets.

Including the internal state estimation as a dynamic variable in the process
equation of (2) solves both of these problems. In addition, the Jacobian evaluations
of (3) are reduced to gradient calculations over each separate layer as opposed to
the requirement of Jacobian evaluations over the entire network.

 Generalizing the proposed algorithm to work for RNNs with an arbitrary
number of hidden layers is easy. We simply add more equations to the process
equations of (2). Eventually, there will be one equation for each hidden layer of

PEs in the form)(*1`***1*
1

−−−
+ ++= l

k
l
k

f
kk

l
k

l
k byWxWy lσ , where the weights

associated with the corresponding layer are used.

SIMULATIONS

To demonstrate the performance of the proposed STEKF training algorithm, we

present the results of a Monte Carlo simulation performed on synthetic data. In
order to guarantee that a global optimal solution that yields zero error exists, the
training data is generated by a state-recurrent neural network, whose weights
(including the initial internal state) are selected randomly. Once the RNN weights
are fixed, a sequence of random vector inputs were passed through the network.
This sequence of inputs and the generated network output were used as the input-
output training pairs for another RNN with the same architecture. In the two sets of
trainings performed, the weights of the RNN to be trained were initialized
randomly either close or far to the true weights of the reference RNN that
generated the training data. The internal states of the RNN being trained, however,
were initialized to all zeros.

For both sets of Monte Carlo runs (20 runs for each case), the RNNs were
trained on a sample-by-sample basis over 1000 training samples using the STEKF
Figure 2. Results of Monte Carlo runs with weights initialized close to the optimal
solution a) Best normalized-MSE achieved by BPTT (dotted) and the Kalman
filter (solid) b) Convergence time of BPTT (dotted) and the Kalman filter (solid).

approach explained above as well as the standard BPTT algorithm. In the BPTT
training, the gradient backpropagation in time was truncated to one sample.

The results obtained from the Monte Carlo runs where the weights are initialized
near their optimal values are summarized in Fig. 2. In the top subplot, the best
normalized-MSE value obtained by both algorithms for each run is shown.
Normalized-MSE is defined as the error energy divided by the energy of the
desired signal for the complete training set. When computing this MSE using the
current estimates of the optimal weights, we use the true initial internal state
values used to generate the training data. This helps eliminate any additional MSE
that would be caused by different initial conditions, thus gives a fair comparison
between the two training algorithms. We observe from the presented MSE results
that when initialized close to the optimal solution, both BPTT and STEKF produce
equivalent solutions in terms of MSE. Nevertheless, STEKF converges to the
optimal solution in fewer iterations (as already noticed by many researchers) as
seen from the bottom subplot of Fig. 2. The convergence time was defined as the
minimum iteration index such that the normalized-MSE is within 10% of its best-
achieved value over the entire training procedure.

We also present the results obtained from the Monte Carlo runs where the
weights are initialized far from their optimal values in Fig. 3. The top subplot,
once again, shows the best normalized-MSE values obtained by the two
algorithms. In this case, we observe the clear advantage of using the STEKF

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
0

Monte Carlo Index

B
es

t M
S

E
 A

ch
ie

ve
d

Initial Weights Near the Optimal Solution

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

Monte Carlo Index

C
on

ve
rg

en
ce

 T
im

e
(I

te
ra

tio
ns

)

algorithm. It is evident that this method is capable of avoiding local minima.
Notice that on the average, the MSE of the solutions obtained by STEKF are equal

Figure 3. Results of Monte Carlo runs with weights initialized far from the optimal

solution a) Best normalized-MSE achieved by BPTT (dotted) and the Kalman
filter (solid) b) Convergence time of BPTT (dotted) and the Kalman filter (solid).

whether the weights are initialized close to or far from the optimal values. In the
subplot of Fig. 3, we can see that the convergence of the Kalman filter is faster
than that of BPTT.

To illustrate the structure of the learning curves, we present in Fig. 4, the
normalized-MSE values for both BPTT and STEKF in a single 1000-sample
training scenario. The Kalman filter clearly converges faster to a smaller MSE than
the standard BPTT algorithm.

In terms of computational complexity of these algorithms, STEKF eliminates
the need to compute the gradient of the RNN output with respect to the hidden
layer(s)’s weights, as well as the need to consider the time -recurrency of the
gradients. These are the main drawbacks of BPTT. On the other hand, additional
matrix multiplications and an inversion (of a matrix the size of the output) are
required by the Kalman filter.

Compared with the traditional Kalman filter approaches, the proposed algorithm
exhibits the same advantages. Since only the weights of the RNN are included as
in the first equation in (2) and the internal states are not considered in these
traditional approaches, the Jacobian of the output mapping in (3) involves
evaluating the gradient of the RNN output with respect to hidden layer and
feedback weights. If one were to include the estimation of the internal states in the
traditional formulation, that would necessitate considering the time-recurrence of
these gradients.

0 2 4 6 8 10 12 14 16 18 20
10

-5

10
0

10
5

Monte Carlo Index

B
es

t M
S

E
 A

ch
ie

ve
d

Initial Weights Far from the Optimal Solution

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

Monte Carlo Index

C
on

ve
rg

en
ce

 T
im

e
(I

te
ra

tio
ns

)

Figure 4. Learning Curves of BPTT (dotted) and the Kalman filter (solid) over
1000 samples, staring from an initial weight set far from the optimal solution.

DISCUSSION

The most important issue in evaluating the performance of an algorithm is its
computational complexity. Suppose a recurrent neural network with L layers
whose lth hidden layer has Nl PEs is trained using the proposed algorithm. Assume
that each hidden layer has full feedback to itself and only to itself.

TABLE 1. COMPUTATIONAL COMPLEXITY OF INDIVIDUAL EQUATIONS
Eq Scalar Multiplies s (.) s '(.) Inversion

(2)
LL

L

l lll

NN

NNN

1

1

1 1)(

−

−

= −

+

+∑ ∑ −

=

1

1

L

l lN --- ---

(3) --- --- ∑ −

= − ++
1

1 1)1(
L

l lll NNN ---

(4) O(BW 2) --- --- NL x NL
matrix

(5) (W+B)NL --- --- ---

We present, in Table 1, the number of operations required by each equation in
the algorithm. In the table W is the total number of weights of the RNN and B is
the total number of hidden PEs.

∑∑ −

== − =+=
1

11 1 ,)1(
L

l l
L

l ll NBNNW (6)

0 100 200 300 400 500 600 700 800 900 1000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Iterations

N
or

m
al

iz
ed

 M
S

E
Learning Curves of BPTT and the Kalman Filter

The most expensive computation, as we see in Table 1, is required by (4) in
terms of scalar multiplications. The evaluation of PE nonlinearities and their
derivatives constitute the second major computational load.
 The advantage of this algorithm is that the derivative calculations are local to
each PE, therefore backpropagation through layers or time is not an issue. The
computations of the Jacobians is greatly simplified by decoupling the gradients of
each layer. In addition, it becomes possible not only to optimize the RNN weights,
but also to recursively update the internal states. This aspect of training recurrent
neural networks has not been considered and it will lead to a smaller training MSE.

CONCLUSIONS

Robust and fast training of recurrent neural networks has been a challenging

problem for the last decade. Due to difficulties associated with the gradient
evaluation in recurrent structures and the fading of magnitudes due to composite
derivatives of the network nonlinearities, standard gradient-descent techniques
have been unable to achieve this goal. In order to circumvent these problems
linked to the backpropagation through time algorithm and its derivatives,
researchers have proposed training algorithms based on the Kalman filter,
formulating the training problem as one of state estimation. These algorithms,
however, suffered from the computational complexity of the Jacobian evaluations.
Although there have been solutions proposed to unravel these difficulties, for
example by using a smaller Kalman filter for each hidden processing element and
disregarding the interdependencies, recurrent neural network topologies did not
become popular.

One other problem with the traditional recurrent neural network training
algorithms has been their neglect to treat the hidden initial internal state as a
parameter to be optimized. This understanding, which regarded recurrent neural
networks as transfer functions, caused training algorithms to yield suboptimal
solutions for the network weights.

In this paper, we proposed an extension to the traditional Kalman filter training
approach by incorporating the internal state variable as an optimization parameter
in the process equations. This modification results in optimal training of the
weights of the recurrent networks as well as the initial hidden state variables. An
added advantage of the proposed algorithm is the computational simplicity it
introduces in the extended Kalman filter formulation. Incorporating the hidden
state variables of the recurrent network into the state vector of the Kalman filter
allows the decomposition of the network into its layers. Therefore, the Jacobian
calculations can be carried out on each layer independently from all the other
layers. This eliminates the backpropagation of the gradient through the layers. The
recursive nature of the Kalman filter process equations take care of the time -
recurrent nature of the gradients eliminating the requirement to backpropagate the
gradients through time. Therefore, this new approach provides an unfolding of the
recurrent network in time as well as layers.

Our comparisons with the standard backpropagation through time algorithm in
Monte Carlo training runs performed on synthetic data provided evidence that this

approach is a fast converging, robust way of training state-recurrent neural
networks. Further work is necessary to test the performance of this training
algorithm on difficult problems requiring a recurrent neural network solution.
Additionally, the ideas behind the decoupled extended Kalman filter [8] and the
unscented Kalman filter [10] could be used to improve the computational
complexity of the proposed algorithm.

Acknowledgments: This work is partially supported by the grants NSF-ECS-

9900394 and ONR-N00014-01-1-0405.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice Hall,

Upper Saddle River, New Jersey, 1999.
[2] W.T. Miller III, R.S. Sutton, P.J. Werbos, (eds.), Neural Networks for Control, MIT

Press, Cambridge, Massachusetts, 1990.
[3] D. Rumelhart, G. Hinton, R. Williams, “Learning Internal Representations by Error

Back-propagation,” Nature, vol. 323, pp. 533-536, 1986.
[4] C. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.
[5] P.J. Werbos, “Backpropagation Through Time: What It Does and How to Do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.
[6] Y. Bengio, P. Simard, P. Frasconi, “Learning Long-term Dependencies with Gradient

Descent is Difficult,” IEEE Transactions on Neural Networks, vol. 5, pp. 157-166,
1994.

[7] S. Singhal, L. Wu, “Training Multilayer Perceptrons with the Extended Kalman
Algorithm,” Advances in Neural Information Processing Systems (NIPS’91), pp. 133-
140, Denver, Colorado, 1988.

[8] G.V. Puskorius, L.A. Feldkamp, “Decoupled Extended Kalman Filter Training of
Feedforward Layered Networks,” Proceedings of the International Joint Conference on
Neural Networks (IJCNN’91), pp. 771-777, Seattle, Washington, 1991.

[9] G.V. Puskorius, L.A. Feldkamp, “Neurocontrol of Nonlinear Dynamical Systems with
Kalman Filter Trained Recurrent Networks,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 279-297, 1994.

[10] S.J. Julier, J.K. Uhlmann, “A New Extension of the Kalman Filter to Nonlinear
Systems,” Proceedings of AeroSense: The 11th International Symposium on
Aerospace/Defense Sensing, Simulation and Controls , Orlando, Florida, 1997.

