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Abstract: In this paper, we describe a time varying extension to the Kalman Filter for 
tracking moving objects in images. Classical methods for tracking assume either a 
constant model, in particular a constant acceleration, or a random acceleration. Those 
assumptions often turn out to be inaccurate. The proposed Kalman Filter adapts its model 
(i.e. the state transition matrix) at each step to better estimate the movement of the 
maneuvering target. The performance of this time-varying Kalman Filter is tested on an 
airborne surveillance video.  Copyright © Controlo 2002 
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1. INTRODUCTION 

 

The Kalman filter has made a dramatic impact on 
linear estimation because of its modeling power and 
implementation simplicity for online estimation. 
Today, the Kalman filter is an established technique 
widely applied in the fields of navigation, guidance, 
aircraft and missile tracking, reentry of space 
vehicles, etc. For target tracking in video images, two 
main assumptions are made in the Kalman filter 
formulation: a constant state model with the 
acceleration as a state, often using position and rate 
measurements, as in [1,2]; or a constant state model 
with the acceleration considered as zero mean 
random input, as Friedland described in [3]. In the 
first model, the acceleration is considered to be 
constant. In that case, the vehicle velocity remains 
constant for a zero acceleration or grows towards 
infinity in the direction of the acceleration. The 
alternative method to this unrealistic model is a 
random acceleration. But the Kalman filter, when the 
acceleration is an input noise, will eventually cancel 
out a zero mean acceleration as an input to the state 
equations. In that method also, the vehicle velocity 
will tend to be constant. In any practical model to 
track moving objects in images, the velocity, as well 
as the acceleration, should be able to vary. Still, the 
acceleration variations for maneuvering targets may 
be considered smooth. It is therefore conceivable to 

predict the current acceleration given the previous 
accelerations. In that case, the accelerations are no 
longer an input to the system, but become states as 
suggested in [4]. At the same time, however, it is 
possible to estimate the acceleration at each step 
given the three previous (noisy) position 
measurements. This acceleration estimate will allow 
us to adapt the state transition matrix during 
operation and therefore obtain a time varying model. 
Consequently, the Kalman filter model becomes time 
varying and will be adapted to the maneuvering target 
movement. 
 
The organization of this paper is as follows. In Sec. 2, 
we present the structure of the adaptive Kalman filter. 
In Sec. 3, we study the performance of the proposed 
algorithm on a set of vehicle surveillance videos. 
  
 
 

2. TIME-VARYING KALMAN FILTER 
 
The maneuvering target movement can be described 
by the dynamic equations 
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where x[k] is the state vector, u[k] is the input vector 
and y[k] is the output.  x[k] will be defined 
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 N≥2, with a[i] being the 

acceleration at step i. 
In our formulation there is no input to the system 
(u[k]=0) because the accelerations are considered as 
states. 
 
2.1 The Adaptive Model 
 
We have decided to work on the accelerations 
because they are the only possible innovation on the 
moving vehicle model. 
We also assumed that the acceleration varies with 
time (sample time T), because, as we already said, a 
constant acceleration would make the velocity either 
constant or eventually infinite.  
The second major assumption is that the current 
acceleration depends smoothly on the previous 
accelerations. If the number of previous accelerations 
is not too large (recent past), we furthermore assume 
that the acceleration can be modeled as a weighted 
sum of previous accelerations. At each step, we do a 
linear fitting of the acceleration data.  
Since there is noise in our estimation of the 
acceleration, we consider that the acceleration vector 
is corrupted by additive Gaussian noise n[k], with 
zero mean and covariance matrix Q[k] to be 
estimated in the design.  
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In a vector-matrix form, the dynamic equations (2) 
can be written as: 
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The measurement equation can be written as: 

y[k] = Cx[k] + υ[k]                                             (4) 
where  C = [ ]1110001 L  and n[k]  
is a zero mean noise with a constant covariance 
matrix R. 
The measurement are p[k], the vehicle position at 
time step k and a[k-2] the acceleration at time step k, 
given by ])2[]1[2][(2]2[ 2 −+−−=− kpkpkp

T
ka . 

Notice that if there is a measurement error, the error 
on a[i] is correlated to the error on a[i-1], and 
therefore the noise is not exactly white. But this only 
changes the shape of the noise covariance matrices 
from diagonal matrices to symmetric Toeplitz 
matrices with all zero diagonals except the first 
principal one. Only the correlation between the a[k-
N] and a[k-N-1] errors cannot be represented in the 
model, which should not alter the algorithm 
performance. 
 
2.1 A Time-Varying Kalman Filter  
 
Several time-varying Kalman filter models have been 
proposed, especially for visual robot tracking tasks 
[5]. Our new time-varying Kalman filter formulation 
is divided into three steps.  
 

• Model Update 
 

In practice the acceleration variations are smooth, so 
the assumed weighted linear dependence will not 
change drastically every step. Therefore, we use an on-
line method to update the weights. 
Each weight vector  is updated 
using the LMS algorithm. 
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where a  is the input vector to the 

Kalman filter at step k-1 and the desired response 

 is the acceleration at the output of Kalman 
filter at the same step. So the error 

 is the difference 
between the optimal acceleration computed by the 
Kalman filter and the acceleration estimated by the 
LMS algorithm. We can also write the Model Update 
with the following formula: 
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A[k]=A[k-1]+η  
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The step size η has to be chosen very carefully 
because it can make the whole algorithm fail. Too big 
a step size would make the model diverge, whereas 
too small a step size would prevent the model to 
adapt. Therefore, the approach for choosing η 
properly is to make it dependent on the system 
dynamics. The dynamics of the Kalman filter are 
represented by the matrix (A[k] –K[k]C), where K[k] 
is the Kalman gain at step k. The step size η will 
consequently be proportional to this matrix norm: 
 CkKkAk ][][][ −= αη  
 The proportionality coefficient α will be chosen 
according to the amplitude of the vehicle movement. 
 
Then a classical Kalman Filter computes the output 
using the previously calculated model. 
 

• Time Update 
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• Measurement Update 
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• State Error Covariance Update 

 
The state error covariance update is useful to make 
sure that the a priori error covariance estimate in the 
Kalman filter the state noise coming from the LMS 
estimation. 
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and finally the optimal estimates of the position p[k] 
and the accelerations ]1[,],2[],1[ +−−− Nkakaka K  are 
given by  

y[k]=C                                    (8) 
∧
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3. RESULTS 
 
The performance of this adaptive Kalman filter has 
been tested on a set of surveillance videos. The 

detection part of the tracking method has been done 
manually. The output of this detection will be 
considered as the ground truth. The algorithm tracked 
only one vehicle on the ground, i.e. there is only two 
tracked coordinates x and y, the altitude not being 
considered. 
 

 
Figure 1: test video example 

 
To evaluate the performance of the adaptive Kalman 
filter, a noise with a constant variance has been added 
to the ground truth. The performance criteria are the 
errors on the position p[k] and acceleration a[k-2] 
measurements (we have considered N=2 in the a[k] 
vector). They have been computed for different 
variances on the whole set of videos.  
 
The next plot shows the results for a detection noise 
standard deviation of 5 pixels.  
We represented separately the plot for x (on the left) 
and y (on the right). The first row shows the standard 
deviations of the position errors in pixels versus the 
time steps, the dashed line being the algorithm error 
standard deviation and the plain line being the 
measurement error standard deviation (that should be 
around 5, for this case). The second row represents 
the standard deviation of the pixel error between the 
real acceleration a[k-2] and the acceleration 
computed by the proposed algorithm. 
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Figure 2:Acceleration and Position Error Standard 

deviations on x and y, with a detection noise standard 
deviation of 5, for the 1st video. 

     



We first observe that the position errors go down for 
both x and y. After 250 steps, the standard deviation 
of the filter output error goes beneath that of the 
measured position error. As expected, the measured 
position error standard deviation is around 5 pixels, 
whereas after 1500 steps, the filter output error 
standard deviation goes below 3 pixels. At the same 
time, the acceleration error standard deviation for x 
and y decreases quickly to around 3 pixels per 
second2, despite large errors at the beginning. 
 
The next figure shows the results for another video 
with the same detection noise standard deviation of 5 
pixels. 
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Figure 3: Acceleration and Position Error Standard 
deviations on x and y, with a detection noise standard 

deviation of 5, for the 2nd video. 

For this other video, the filter output error also goes 
below the measurement error after 200 steps, when 
that acceleration error starts to be negligible. 
 
The third plot shows the same parameters on the first 
video but for a detection noise standard deviation of 
10 pixels. 
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Figure 4: Acceleration and Position Error Standard 

deviations on x and y, with a detection noise standard 
deviation of 10, for the 1st video. 

Even with a higher noise standard deviation, the 
observations remain the same. The filter output error, 
here around 5 pixels, is always below the 
measurement error, and the acceleration error is 
negligible. 

   
In every experiment, the acceleration and the position 
errors are always inferior to the acceleration and 
position measurement. Besides, the algorithm 
becomes efficient after 200-250 steps, which 
corresponds for those MPEG videos to approximately 
10 seconds of tracking. 
Nevertheless, the convergence of this algorithm very 
much depends on the step size η. A too large step 
size will indeed make the accelerations grow 
exponentially and make the Kalman filter fail. 
Further work needs to be done to estimate the right 
step size for each problem. 
Also, in all the experiments, the added detection 
noise is chosen to be an additive Gaussian noise, 
which is not necessarily the case. A classic detection 
algorithm needs to be applied to the data to make the 
performance evaluation of this time-varying Kalman 
filter more relevant.
 
 
 

6. CONCLUSIONS 
 
In this paper, we have introduced a time-varying 
Kalman filter applied to moving vehicle tracking. The 
key idea is to consider the accelerations not as inputs 
to the system, but as states, in the model. Besides, in 
that model, the accelerations are modeled as a 
weighted sum of the previous accelerations. A linear 
fitting is recursively performed using an LMS 
algorithm. The computed model (state transition 
matrix, state error covariance matrix) is then used in a 
classic Kalman filter that has the vehicle position and 
several accelerations as its outputs. We have 
demonstrated the effectiveness of this filter on a set 
of airborne vehicle surveillance videos. After 
approximately 10 seconds of tracking, the algorithm 
becomes efficient, independently of the detection 
noise. However, further work needs to be done in 
order for the algorithm to be more robust, with a 
proper tuning of the step size, and for its performance 
to be independent of the detection noise 
characteristics.  
This time-varying Kalman filter shows promising 
results for moving vehicles tracking. 
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