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ABSTRACT 
 

A well-known fact in blind deconvolution is that if the 
unknown source signal is white (temporally) and the unknown 
channel filter is minimum phase, it is possible to determine the 
inverse filter (equalizer) by evaluating simply the power spectral 
density (PSD) of the received signal. For blind source separation, 
however, a similar special case, equivalent to the situation in blind 
deconvolution, is not reported.  In this paper, we identify the 
special conditions for which the solution of the blind source 
separation problem can be identified using only second order 
statistics of the observed mixtures. In this special case, the 
equivalent of minimum phase channel turns out to be a symmetric 
mixing matrix, and the equivalent of temporally white input signal 
translates to uncorrelated source signals.  A fast-converging and 
robust on-line blind source separation algorithm using a recently 
introduced principal components analysis (PCA) algorithm named 
SIPEX-G is also presented and its performance is evaluated in 
simulations of source separation. 
 
1 INTRODUCTION 

 
In contemporary signal processing applications, blind 

approaches play a central role. Ranging from communications to 
speech and image processing, these techniques proved themselves 
valuable in numerous problems [1,2]. Blind deconvolution (BD) 
and blind source separation (BSS) are two such approaches 
investigated in detail especially in the last two decades. These two 
problems are so similar in nature that it is often possible to form 
analogies and even utilize algorithms interchangeably to solve 
these problems [3].  

Blind deconvolution problem is schematically shown in Fig. 
1, where both the channel impulse response and the input signal are 
unknown. It is assumed that we have only some knowledge on the 
statistical properties of the input signal. Common assumptions 
include stationary-white or iid (independent and identically 
distributed) as source models [4,5]. The unknown channel h is 
linear time-invariant. 

In the blind deconvolution literature, it is a well-known fact 
that for a temporally white input and a minimum phase channel, 
the solution, which is the inverse filter w, can be uniquely 
determined from only the second order statistics of the 
observations. Since the source is white, its power spectral density 
(PSD) is flat and the magnitude spectrum of the channel can be 
determined using the PSD of the observed signal. Using the 
knowledge that the channel is minimum phase, its transfer function 
can be determined as the inverse filter [2,3]. For all other 
situations, higher order statistics about the data need to be 
considered to arrive at a solution [2,3]. 

Instantaneous blind source separation is similar to the above 
problem in nature. The difference is that there are multiple sources, 
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Figure 1. Schematic diagram of blind deconvolution 
 
 
 
 
 

 
 
 
Figure 2. Schematic diagram of blind source separation 

 
which are commonly assumed to be independent to allow 
utilization of independent component analysis (ICA) algorithms 
[1,6]. The instantaneous BSS (or the ICA) problem is 
schematically shown in Fig. 2. It is assumed that the (stationary) 
source signals are unknown as well as the mixing matrix.  

Despite this structural similarity and the fact that ICA 
algorithms are used for BD as well as BSS, the question of whether 
there is a special case of BSS requiring only second order statistics 
of the observed signals has not been addressed. In this paper, we 
will show that, there is a special case of the mixing matrix H where 
the wide sense stationary (WSS), uncorrelated sources (not 
necessarily independent) can be separated using only second order 
statistics. Recall that in the case of non-stationary source signals, 
algorithms employing only second order statistics can readily be 
used [7]. In these situations, due to the nonstationarity of the signal 
and time-invariance of the mixing matrix, decorrelation of the 
mixtures at multiple lags (of the cross-correlation function) allows 
the computation of the solution. The procedures that will be 
presented here, however, will work even if the source signals are 
stationary, whereas nonstationarity of the sources is crucial to the 
success of the above mentioned second order methods in BSS. 

Our investigation points out that in situations where the 
mixing matrix is symmetric, the sought property occurs, i.e. the 
instantaneous blind source separation problem can be solved using 
second order statistics only (even in the stationary case). Realistic 
situations where a nearly symmetric mixture may arise include, for 
example, nearly symmetric physical settings in audio mixtures. 
Another situation is the cleaning of old documents, where ink from 
a page leaks to the opposite face of that page and also to the other 
neighboring page in time. Intuitively, one expects the gain of 
leakage to be symmetric in both directions, yielding a symmetric 
mixing matrix. 
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The organization of this paper is as follows: First we present 
the theoretical background for source separation in the symmetric 
matrix situation. Then we provide a PCA-based source separation 
algorithm and the SIPEX-G PCA algorithm. Next, simulation 
results are provided to verify the performance of the proposed 
approach. In the conclusions, we discuss relevant applications and 
possible future research. 
 
2 SYMMETRIC MIXING MATRIX IN BSS 
 

Consider the instantaneous BSS problem depicted in Fig. 2. 
We have the mixtures as a linear combination of the sources, i.e. 
x=Hs. Typically, the sources are assumed WSS and independent. 
In contrast, assume the sources are merely uncorrelated, but still 
WSS. In addition, assume that the mixing matrix H is symmetric. 
From linear algebra, we know that if H is symmetric, its 
eigenvalues and eigenvectors are real. Let Qh be the orthonormal 
eigenvector matrix of H, ordered in descending order of their 
corresponding eigenvalues.  Let �h be the corresponding diagonal 
eigenvalue matrix. Then we have HQh=Qh�h, therefore H= 
Qh�hQh

T.  
A solution to the source separation problem is given by the 

inverse of the mixing matrix, H-1=Qh
-T�h

-1Qh
-1= Qh�h

-1Qh
T. The 

gain factor and permutation indeterminacy of the ICA problem still 
applies here. Therefore, we can assume the sources are all unit 
power, without loss of generality. Combining this with the 
assumption that they are uncorrelated, we get the source vector 
covariance matrix as �s=I. The covariance matrix of x is then 
�x=H�sHT= HHT. 

Now consider HHT=Qh�hQh
T Qh�hQh

T= Qh�h
2Qh

T. From this, 
we get (HHT)Qh=Qh(�h

2). Since �x=HHT, we conclude that the 
eigenvectors of H and the eigenvectors of �x are the same.  The 
corresponding eigenvalues of �x, however, are squared eigenvalues 
of H.  The following lemma summarizes this result. 

 
Lemma 1. Let be two random vectors related by the 
equation x=Hs. Assume H is symmetric and the covariance matrix 
of s is �

1, nxxs ��

s=I. If (Qh ,�h) are the eigenvector-eigenvalue matrices for 
H, and (Qx ,�x) are the eigenvector-eigenvalue matrices for �s, then 
these matrices are related to each other by Qx=Qh, and �x= �h

2. 
Proof: In the preceding text. 
 

This result has significant theoretical and practical 
implications. The primary theoretical and intuitively appealing 
implication of this result is that the symmetric mixing matrix 
situation in BSS is the counterpart of the minimum phase mixing 
filter in BD. In accordance with the structural variations between 
the two problems, the temporal whiteness assumption on the source 
signal of the BD problem is replaced by spatial whiteness 
(uncorrelatedness of sources). On the other hand, the primary 
practical implication is that it is possible to (approximately) solve 
the blind source separation problem using only second order 
statistics for WSS, uncorrelated sources, when the mixing matrix is 
symmetric (close to being symmetric). 

 
3 SOURCE SEPARATION ALGORITHM 
 

In the previous section, we have established the fact that under 
certain conditions it is possible to determine the sources blindly 
using only second order statistics, namely principal components 
analysis (PCA). Since the mixing matrix and the mixture 
covariance matrix has the same eigenvectors, applying PCA on the 
mixture, x, one can determine the eigenvectors of H.  The 
eigenvalues can also be estimated from the variances of the 

principle components according to the relationship given in 
Lemma 1. The algorithm, then can be summarized as follows: 

 
BSS Algorithm (Off-Line or On-Line): 
�� Estimate Qx=Qh using any PCA algorithm (perhaps on-line) 

from samples of x 
�� Estimate �x from the variances of the principle components 
�� Calculate �h

-1=�x
-1/2  

�� Evaluate H-1=Qh�h
-1Qh

T, the separation matrix 
 

This algorithm can be used to separate WSS, uncorrelated 
sources, even if these sources all have Gaussian densities as 
opposed to ICA, where at most one source is allowed to exhibit a 
Gaussian distribution [1,6]. As a consequence, WSS-independent 
sources and non-WSS-uncorrelated (also independent) sources can 
also be separated. If the mixing matrix is time varying, then a fast 
and robust on-line PCA algorithm can be employed with a 
forgetting factor to track the inverse of the time-varying mixture. 
This brings us to the choice of the PCA algorithm. 

 
4 THE SIPEX-G ALGORITHM 
 

This fast-converging, robust PCA algorithm has been recently 
proposed and is shown to outperform benchmark PCA algorithms 
including Sanger’s rule, APEX, and Xu’s LMSER [8]. 
Conventional PCA algorithms approach the problem as a 
constrained optimization problem, where Oja’s first order weight 
normalization update rule and deflation are common practice to 
obtain a solution to this constrained optimization problem [9,10]. 
On the contrary, SIPEX-G parameterizes the PCA weight matrix in 
terms of Givens rotation angles thus guaranteeing that the PCA 
matrix is orthonormal at all times and the optimization task is 
unconstrained. This approach enables the SIPEX-G algorithm to 
outperform the conventional methods by restricting the search 
space of the weight matrix to the set of orthonormal matrices.  

Assuming a PCA network of the form y=Rx, where R is an 
orthonormal matrix parameterized in terms of the Givens angles as 
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where each Givens rotation matrix in the plane of the ith and jth 
axes is denoted by Rij, and is given by an identity matrix whose 
four entries at the intersection of ith and jth rows with ith and jth 
columns are modified as follows: The (i,i)th and (j,j)th entries are 
cos�ij, and the (i,j)th and (j,i)th entries are -sin�ij and sin�ij, 
respectively [8]. In order to determine the principle components, 
the following cost function is used. 

�
�

�

�

1

1

)(
n

o
oo yVarJ �               (2) 

Here yo is the oth output and �1>�2>…>�n-1>0 are gain factors to 
increase convergence speed in case of large eigenspread and close 
eigenvalues. 
 
SIPEX-G Algorithm (On-Line):  
Step 1. Initialize Givens angles, � = [�pq]  
Step 2. Initialize input covariance estimate Rx.  
Step 3. In non-WSS environments, update the covariance 

estimate using the recursion 
                  (3) T

kkxx xxkRkR �� ���� )1()1()(
and in WSS environments, use the consistent 
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 Unbiased covariance estimates could also be used. 
Step 4. Calculate the gradient of the cost function with respect to 

the Givens angles using  
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where Rij and Rx,ij are the (i,j)th entries of the corresponding 
matrices.  

Step 5. Update Givens angles using gradient ascent. 
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Step 6. Go back to step 3 and continue until convergence. 
 
 As mentioned before, SIPEX-G is a robust and fast-
converging on-line PCA algorithm that easily outperforms 
conventional approaches.  
 
5 SIMULATIONS 
 
 In this section, we will evaluate the performance of the 
proposed blind source separation algorithm for symmetric and 
nearly symmetric matrices. Recall that the method can successfully 
separate uncorrelated sources (without any restrictions on their 
density functions), if they are mixed with an almost symmetric 
matrix. However, for comparison purposes, we will restrict the 
sources to be independent and non-Gaussian. 
 As a case study, we perform a series of Monte Carlo runs with 
two independent, Laplacian distributed sources, where the mixing 
matrix is given by H+Hpert where Hpert is a 2x2 random 
perturbation matrix whose entries have an average power set to a 
percentage of the symmetric part of the matrix, H. For each value 
of the percentage in the range 0-100%, 40 Monte Carlo runs are 
performed using random perturbation matrices. In each run, on-line 
separation of the two sources is realized using the PCA-based 
method and the benchmark ICA algorithm, Infomax (with 
whitening and Amari’s natural gradient) [6,11]. For the PCA 
algorithm, which uses SIPEX-G, the Givens angles were initialized 
to all zeros (corresponding to an initial eigenvector matrix estimate 
of In). The average of signal-to-interference-ratios (SIR), as defined 
in (7), of the last 1000 iterations of each 10000-sample run was 
taken as the performance of the algorithm for that specific 
simulation. The mean performance of the Monte Carlo runs is 
plotted versus the percentage of perturbation in Fig. 3. As 
expected, when the mixing matrix diverges from being symmetric, 
the performance of the PCA-based separation algorithm degrades 
and Infomax is unaffected by the structure of the mixing matrix. 
However, up to a level of approximately 10% perturbation (in each 
off-diagonal entry), the PCA separation algorithm maintains its 
superior performance up to a perturbation level of approximately 
25% in each entry. PCA is still sufficiently successful (>20dB) 
even at close to 100% perturbation, since in audio applications, 
usually 20dB and over corresponds to acceptable separation as far 
as human hearing capabilities are concerned [12]. 

 Consider the physical setting in Fig. 4, with two speakers 
and a listener (two observations, one from each ear), which is 
located at the center. Assuming that the sound pressure decreases 
inversely proportional to the distance from the source and the 
mixing is instantaneous (a more realistic model would be 
convolutive), each entry of the mixing matrix will be proportional 
to 1/d, where d is the distance between the corresponding source-
sensor pair. Suppose that one source is at a distance d from one of  
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Figure 3. Average SIR(dB) vs percentage perturbation from a 
symmetric matrix 

 
Figure 4. Illustration of permissible deviation from a symmetric 
mixing matrix translated to a physical environment in a two-
source-two-sensor case. 
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Figure 5. A sample convergence plot for PCA-based and InfoMax 
algorithms for the separation of three Laplacian sources 

 
the sensors (right ear in this case), then the shaded area in Fig. 4 
(which is centered at the left ear) corresponds to the region in 
which the second source could be located, in order for the 
performance of the proposed PCA-based algorithm to surpass that 
of Infomax. 
In terms of a physical setting where sound pressure decreases 
inversely proportional to the distance between the source and the 
sensor, the 10% perturbation of the matrix corresponds 
approximately to an 18% perturbation in distance.  As depicted in 
Fig. 4, the distance of the second speaker may vary in the shaded 
region and the mixing matrix may deviate from being symmetric, 
yet the PCA-based separation algorithm would still perform better. 
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Figure 6. A sample convergence plot for PCA-based and InfoMax 
algorithms for the separation of four Gaussian sources 

 
The SIR performance measure we have utilized is defined as 
follows. Given a mixing matrix A and a demixing matrix estimate 
B, the overall matrix is BA, which should be as close as possible to 
a permutation times a diagonal scaling matrix. SIR measures this 
distance between BA and a permuted scaling matrix by 
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where qi is the ith row of BA. 
The final superior performance of the PCA-based separation 

when the necessary assumptions are met is not its only appeal. It 
also converges faster, in general, compared to the ICA methods 
that do not constrain their separation matrices in regard to the extra 
information about the mixing process. Usually, these methods 
undertake a first-whiten-then-separate approach. Clearly, in this 
case, the convergence of the whitening and the separation matrices 
are simultaneous, since the separation matrix (which is a rotation) 
is immediately determined from the eigenvectors of the whitetning 
matrix. This fast-convergence is demonstrated in Fig. 5, in a three-
source separation problem. Infomax uses the whitening solution 
generated by SIPEX-G also. 

It was mentioned in the theoretical section that this PCA-
based separation method only requires that the sources are 
uncorrelated and no specific distribution type is excluded as in 
ICA. As a final example, we present a typical convergence plot 
from the separation of four uncorrelated Gaussian sources for a 
symmetric mixing matrix. The result is shown in Fig. 6. As 
expected, Infomax fails to separate these sources as they are all 
Gaussian distributed, however, the proposed approach successfully 
finds the inverse of the mixing matrix to achieve a very good SIR 
of approximately 35dB. 
 
6 CONCLUSIONS 
 
 Temporal white input and minimum phase channel is a special 
case in blind deconvolution, where only second order statistics are 
sufficient to obtain a unique solution. In this paper, we have 
demonstrated that such a special case also exists for blind source 
separation (instantaneous mixing), where spatially white, i.e. 
uncorrelated, source signals and a symmetric mixing matrix 
replaces their counterparts in blind deconvolution. 

Starting from basic assumptions, we have established the 
limitations and capabilities of the proposed approach; given a 
symmetric mixing matrix, it has been demonstrated that with this 

method, WSS / non-WSS and uncorrelated / independent sources 
can be separated successfully using only PCA in both time-
invariant and time-varying mixing matrix situations. In addition, it 
was shown that separation of sources irrespective of their densities 
is possible with this method even if more than one source is 
Gaussian. 

Finally, we proposed an on-line blind source separation 
algorithm based on a robust and fast-converging on-line PCA 
algorithm called SIPEX-G and demonstrated its performance by 
Monte Carlo runs on the separation of two and three independent 
Laplacian sources. Simulation results demonstrated that even if the 
mixing matrix is not perfectly symmetric, the algorithm tolerates 
this situation and successfully determines the inverse of the mixing 
matrix in that it provides a more than sufficient accuracy. 
Comparisons with Bell-Sejnowski’s Infomax revealed that for a 
range of mixing matrices that are nearly symmetric, the proposed 
PCA approach is both faster and better in terms of final signal-to-
interference ratio attained. 

This work provides interesting intuitions and raises questions 
about the relationship between minimum phase filters and 
symmetric matrices. It also opens an alternative door to solving 
symmetric and minimum-phase multi-channel blind deconvolution 
problems (also called convolutive BSS) using only second order 
statistics (PCA and PSD). Further research in these promising 
topics may result in efficient and effective approaches to solve the 
convolutive blind source separation problem in the above-
mentioned particular situations. 
Acknowledgments: This work is partially supported by NSF grant 
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