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Abstract. Adaptive systems research is mainly concentrated around optimizing
cost functions suitable to problems. Recently, Principe et a. proposed a particle
interaction model for information theoretical learning. In this paper, inspired by
this idea, we propose a generaization to the particle interaction model for
learning and system adaptation. In addition, for the specia case of supervised
multi-layer perceptron (MLP) training we propose the interaction force
backpropagation agorithm, which is a generdization of the standard error
backpropagation agorithm for MLPs.

1. Introduction

Adaptive system training agorithms research has long been diven by pre-defined
cost functions deemed suitable for the agpplication. For instance, meansquare-error
(MSE) has been extensvely utilized as the criterion in supervised learning and
adaptation, dthough dternatives have been proposed and invedtigated relatively less
frequently [1]. Second order detistics, by definition, have adso been the cost function
for principd component andysis [2]. Other higher order datidtics, including higher
order cumulants like the kurtosis, high order polyspectra, etc., and information
theoretic cogt functions have manly been gudied in the context of blind sgnd
processing with gpplications to independent component andysis (ICA), blind source
separation (BSS), and blind deconvolution [3-5]. The commondlity of al the research
on these is tha the andyses are manly motivated by the corresponding sdlected
adaptation criterion.

Working on the same problems, Principe e d. have utilized Renyi's quadratic
entropy definition and introduced the term information theoretical learning to the
adaptive systems literature [6]. Their nonparametric estimator for Renyi’s quadratic
entropy, which is based on Parzen windowing with Gaussan kernels, incited the idea
of paticle interactions in adgptation. Specificdly conddering the Hind source
separation problem, they have defined and demondrated the quadratic information
forces and the quadratic information potential a work in this context. Their insight
on the adsptation process as an interaction between information particles deserves
further investigation. Erdogmus and Principe have recently extended the entropy
edimator to any entropy order and kerne function in Parzen windowing [7]. This



generdization of the entropy edimator dso led to the extensions of the definitions of
information potential and force. Successful applications of this entropy estimator in
suparvised and unsupervised learning  scenarios have  increesed  confidence  and
interest on information theoretic learning [8,9].

Inspired by the abovementioned information-particle interaction modd for
learning proposed in [6], we investigate in this communication the possbility of
generdizing the concept of paticle interaction learning. Our am is to determine a
unifying model to describe the learning process as an interaction between particles,
where for some specid case these may be the information particles or for some other
specid case, we may end up with the commonly utilized second order statistics of the
data. The formulations to be presented in the sequel will achieve these objectives and
we will cal this generd agpproach the potential energy extremization learning
(PEEL). Also, specificaly applied to supervised learning, we will obtain the minimum
energy learning (MEL). In addition, we will propose a generdized backpropagetion
agorithm to train MLPs under MEL principle. For the specific choice of the potential
fidd (to be defined later) that reduces the minimum energy criterion to MSE, we will
observe that the generdlized backpropagation agorithm reduces to the <tandard
backpropagation agorithm.

2. Adaptation by Particle I nteractions

Traditionally, the adaptation process is regarded as an optimization process, where a
suiteble pre-defined performance criterion is maximized or minimized. In this
dternative view, we will trest each sample of the training data set as a particle and let
these particles interact with each other according to the interactions laws that we
define. The parameters of the adaptive sysem will then be modified in accordance
with the interactions between the particles.

2.1 ParticleInteraction Mode

Suppose we have the samples {z,....z¢ generated by some adaptive system. For
samplicity, assume we ae deding with dngle dimensond random varigbles
however, note that extendons to multi-dimensond dtudions ae trivid. In the
paticle interaction modd, we assume that esch sample is a particle and a potentid
field is emanated from it. Suppose z generates a potential energy fidd. If the potential
fiddld that is generated by each paticle is v(¥), we require this function to be
continuous and differentiable, and to satisfy the even symmetry condition v(X) = W-X).
Notice that due to the even symmetry and differentigbility, the gradient of the
potentid function a the origin is zero. With these definitions, we observe that the
potential energy of particle z due to particle z is V(z|z) = v(z -z). The total potential
energy of z dueto dl the particlesin thetraining set isthen given by
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Defining the interaction force between these particles, in andogy to physics, as
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we ohtain the totdl force acting on particle z
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Notice that the force applied to a particle by itsdf is F(z |zj)=v((0) =0.
Finaly, the total potentid energy of the sample set is the sum (possibly weighted) of
the individud potentials of each particle. Assuming that each particle is weighted by a
factor gz) that may depend on the particle's vaue, which may as well be independent
from the vaue of the particle, but different for each particle, the totd energy of the

system of particlesisfound to be
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Assuming that (z)=1 for dl samples we can determine the sendtivity of the
overdl potentiad of the paticle system with respect to the postion of a specific
particle z. Thisis given by
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In the adaptetion context, since the samples are generated by a parametric adaptive
system, the senstivity of the total potential with respect to the weights of the system
is dso of interest. This sendtivity is directly related to the interaction forces between
the samples asfollows
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2.2 Some Special Cases

Consder for example the potentid function choice of v(x) =x?/(2N?) ad
weighting function choice of g (z;) =1 (i.e unweighted) for al samples. Then upon
direct subgtitution of these values in (4), we obtan V(2 equds the biased sample
vaiance, i.e minimizaion of this potentiad energy will yidd the minimum variance
solution for the weights of the adaptive system. In generd, if we sdect potentid

functions of the form v(x) :ix p| , where p>1, with no weighting of the particles we
obtain cost functions of the form
N N
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which are directly related to the absolute centrd moments of the random veriable Z,
for which z's are ssmples. Each value of p correspondsto adifferent choice of the
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Fig. 1. A snagpshot of the information particles (output vector samples) and the
ingtantaneous information forces acting on these particlesin two-dimensond BSS.

distance metric between the particles from the family of Minkowski norms.

The information potential estimators of [6] and [7] aso fal into this same category
of cogt energy functions. The quadratic information potentid (based on Renyi's
quadratic entropy) estimator in [6], which uses Gaussan kernds Gg(.) with standard
devidtion s (named the kernd size), is
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The generdized information potential estimator in [7], on the other hand is
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In (9), a is the entropy order for Renyi’'s definition and kg(.) is the kernel function,
which must be a vaid pdf. Notice tha for the potentid function choice

V(X) = Gg ®)/N? ad g (z;)=1 in (4, we obtan the quadratic information
potentiadl of (8). Additionaly, for v(x) =k, x)/N? and g (z;) = P(z 2, we
obtan (9) from (4). In the latter, f)(zj) is the Parzen window estimate, using kerne
ks(.), of the probability density of particle z [10].

2.3 lllugtration of Information Forcesin Independent Component Analysis

As an example condder the quadratic information forces acting on the samples in a
two-dimensiond ICA/BSS scenario where the topology is a square matrix of weights
followed by nonlinearities matched to the cumuletive dendties of the sources as
described in [6]. Renyi’'s quadratic joint entropy of the outputs of the nonlinearities is
to be maximized to obtain two independent sources. It is shown in [6] that



maximizing Renyi's quadretic entropy is eguivdlent to minimizing the quedrdic
information potential given in (8). In this expresson, a circular twoedimensond
Gaussan kend is employed as the potentid fiddld emanating from each particle and
this is used to evduae the information forces between paticles Under these
circumgtances, a snapshot of the particles and the instantaneous quadratic informaion
forces, which can be cdculated from (3), acting on these particles are shown in Fg. 1.
Since the optimd solution is obtaned when the joint entropy is maximized, these
forces are repulsve and as cdealy seen in the figure, the particles repd eech other to
arive a auniform distribution in the unit square in the twoe-dimensiona output space.

3. BackPropagation of Interaction Forcesin MLPs

In this section, we will derive the backpropagation dgorithm for an MLP trained
supervised under the MEL principle This extended agorithm backpropagates the
interaction forces between the particles through the layers instead of the error, as is
the case in the standard MSE criterion case. For smplicity, consider the unweighted
potentid of the error as the cost function. For multi-output situations, we simply sum
the potentials of the error signals from each output. Assume the MLP has | layers with
M, processing elements (PE) in the o" layer. We denote the input vector with layer

index zero. Let wj) be the weight connecting the i input to the | output in the o”
layer. Let v§(s) be the syngpse potentia of the i" PE a d" layer corresponding to the

input sample Xx(s), where s is the sample index. Let j (.) be the sigmoidd nonlinearity
of the MLP, same for al PEs, including the output layer. Assume V(.) is the potential
function of choice and we have N training samples. The totd energy of the error
particles, where g (t) istheerror at the Kh output for training sampletisthen
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In order to save space, we skip the derivation and present the agorithm. It suffices to
tel that the derivation of the agorithm follows the same lines as the derivaion of the
standard  backpropagation, which can be found in numerous textbooks on neurd

networks [1]. In the agorithm beow, h is the learning rate and j (.) is the derivaive

of the MLP ssigmoid function.
Algorithm. Let the interaction force acting on sample s due to the potentid field of

sample t be F(g;(9)|e;(t)) = v&e; (s) - €;(t)) inthe j" output node of the MLP.

These interactions will minimize the energy functionin (10).

1. Evduate loca gradientsfor the output layer forst=1,...,Nand j=1,...,m,using
di(s|t)=-F(e;(s)l e (1) F €vj(s), djtls) =-F(et)le ()5 &V (1)

2. For layer index o going down from |-1 to 1 evauate thelocd gradients
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3. For each layer index ofrom 1 to | evaluate the weight updates (to minimize V)
DW= -h [d9(sI)yP (9 +dP(t] 9y ()

Notice that for the squared error critaion with Vv(x) =x?, the interaction force

becomes  F(g;(s) |€;(t)) =2(g;(9) - €j(t)) ad the dgorithm reduces to the
backpropagation of error vaues.

4. Discussion

Adaptive systems research is traditionally motivated by the optimization of suitable
cogt functions and is centered on the investigation of learning adgorithms that achieve
the desred optimd solution. In this paper, inspired by the idea of information
theoretic learning through partide interactions, we have proposed an dternative
approach to adaptation and learning. This new approach dlows us to regard this
process in andogy with interacting particles in a force field in physics. Besides the
intellectual appeal of this viewpoint provides us for further theoreticad study on
learning, it may be promising in designing real systems that utilize physica forces to
change its state and eventudly adapt to its environment to need. It might dso
fascilitate self-organization in distributed systems, through pairwise interactions.

References

1. Haykin, S: Neural Networks: A Comprehensive Foundation. 2¢ edn. Prentice Hall, New

Jersey (1999)

Oja, E.: Subspace Methods for Pattern Recognition. Wiley, New Y ork (1983)

Haykin, S. (ed.): Unsupervised Adaptive Filtering, Vol. 1. Blind Source Separation.

Wiley, New Y ork (2000)

Haykin, S. (ed.): Unsupervised Adaptive Filtering, Vol. 2: Blind Deconvolution. Wiley,

New Y ork (2000)

Hyvarinen, A., Karhunen, J, Oja, E.: Independent Component Analysis. Wiley, New

York (2001)

Principe, J.C., Xu, D., Fisher, JW.: Information Theoretic Learning. In: Haykin, S. (ed.):

Unsupervised Adaptive Filtering, Vol. 1. Blind Source Separation. Wiley, New York

(2000)

Erdogmus, D. Principe, J.C.: Generdized Information Potential Criterion for Adaptive

System Training. To appear in |IEEE Trans. in Neural Networks (2002)

8. Santamaria, |., Erdogmus, D., Principe, JC.. Entropy Minimization for Digital
Communications Channel Equalization. To appear in IEEE Trans. on Signal Processing
(2002)

9. Torkkola, K., Campbell, W.M.: Mutual Information in Learning Feature Transformations.
In: Proceedings of the International Conference on Machine Learning. Stanford (2000)

10. Parzen, E.: On Estimation of a Probability Density Function and Mode. In: Time Series
Analysis Papers. Holden-Day, California(1967)

o g o~ Wb

~



