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Abstract 

Recently, several research groups demonstrated 
that linear models could estimate hand position 
using populations of action potentials collected in 
the pre-motor and motor cortical areas of a 
primate’s brain. One of the practical applications of 
this discovery is to restore movement in patients 
suffering from paralysis. In this paper, we compare 
two different approaches to extend this work. One 
uses a recurrent neural network to create a 
nonlinear input-output model directly from spike 
trains to hand positions. The other utilizes both the 
spike trains and the hand positions as states and 
applies optimal linear state estimation (Kalman 
filter) to arrive at the desired model. Both 
approaches show very accurate position 
estimations (c.c. larger than 0.9) during reaching 
movements. Each approach has strengths and 
weaknesses that will be compared experimentally. 

 
1 Introduction 

 
Man-machine interaction has a long and diverse history. 
The crux of the interaction is based on transferring the 
intent of the individual to the machine. Throughout 
history, the operator’s limbs (hands, arms, legs, or feet) 
have been the conveyers of control, under visual and/or 
proprioceptive feedback.  The intent of our work is to 
substitute physical control by signals derived directly 
from the operator’s brain to drive a variety of machines 
for purposes of locomotion, enhanced ability, or virtual 
reality (remote) interaction. One of the key motivations is 
to help patients suffering from neurological disorders in 
which motor control of the limbs has been lost. 

Nicolelis and colleagues (Wessberg et al., 2000) 
demonstrated that firing patterns from ensembles of 
cortical neurons could successfully predict (in real time 

through a linear model and time-delay neural network 
TDNN) the hand position of a primate. In the prediction 
procedure, large arrays of 100+ microelectrodes are 
implanted in the pre-motor and motor areas of a primate. 
Electrode outputs are processed by spike detection and 
sorting algorithms to determine firings of single neurons. 
Spike counts in 100 msec windows are then fed to either a 
104x10 (104 channels and 10 delays) finite impulse 
response filter (FIR) trained with least squares 
(effectively a Wiener filter (Haykin, 1996)) or a 
1040x15x3 TDNN (1040 for 104 channels with 10 delays 
each) trained with conjugate gradient to match the x, y, z 
coordinates of the primate’s hand. They showed that they 
could successfully predict the location (3-D) of the 
primate hands in real-time with average correlation 
coefficients ranging from 0.6 to 0.7 over 20 minute 
averages. 

Other groups have also demonstrated neural control 
of devices using many methods. Chapin and colleagues 
utilized a recurrent neural network to predict lever 
pressing from ensembles of rat cortical neurons (Chapin 
et al., 1999). Nonhuman primate spiral tracing prediction 
with the population vector algorithm has been proposed 
by Schwartz (Moran et al., 1999). 

In this paper, we extend this work into two different 
directions with the hope of understanding the nature of 
the relationship we need to model. The first approach 
keeps the input-output modeling used in (Wessberg et al., 
2000) but substitutes the linear filter and TDNN by a 
recurrent neural network (RNN). The potential 
advantages of the recurrent neural network are that it is a 
nonlinear universal approximator and requires much 
fewer parameters than the linear and TDNN models. 
However, training the RNN is a nontrivial task, and 
during testing the system parameters are fixed. Moreover, 
it does not attempt to explicitly model the intrinsic noise 
in the data.   
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Due to these weaknesses, we also studied an 
alternative modeling approach based on an optimal 
recursive state estimation based on a Kalman filter. The 
Kalman filter is a state estimator that not only estimates 
the internal state variables for a linear dynamical system 
(Kalman, 1960), but also produces a generative model for 
the data and models probabilistically the noise. In this 
specific application, the system state variables include the 
hand position, velocity, and acceleration, and the spike 
trains, which are estimated in real time from the hand 
positions and firing patterns of cortical neurons. The 
recursion of the Kalman filter is well suited for learning 
the nature of biological motor systems, since the states are 
intrinsically related in time. Although the trained model, 
which translates the firing patterns of cortical neurons to 
control parameters, is time-invariant, the Kalman state 
estimator is robust due to its adjustable gain during 
testing. However, it assumes a linear relationship in the 
modeling and it has a large state vector.  Hence, one of 
the goals of this paper is to find out how the different 
characteristics of the two modeling approaches are going 
to affect performance. This paper is organized as follows: 
first we present the two data models, then we show how 
they perform with real data, and finally we discuss the 
results and conclude. 
 
2 MODELING 
 
In this paper, we employ two modeling approaches. These 
are input-output modeling using recurrent neural networks 
and linear state-space modeling for use in Kalman 
filtering. 
 
2.1 Recurrent Neural Network 
In this modeling approach we assume that there exists an 
unknown system that maps spike trains into hand 
positions, and by observing both its inputs and the outputs 
we can adapt a nonlinear model that can approximate the 
desired relationship. Here the model is a recurrent 
multiplayer perceptron (MLP) proposed in (Puskorius et 
al., 1996). This network differs from an MLP since it 
contains feedback connections in its hidden layer. The 
architecture consists of an input layer with 104 channels, 
a hidden layer of nonlinear processing elements (PEs), (in 
this case tanh), and an output layer of linear PEs.   

Fig. 1 depicts the topology of the recurrent network 
that is used in our studies. Each hidden layer PE is 
connected to every other hidden PE using a unit time 
delay. We can see in (1) that the state produced at the 
output of the first hidden layer is a nonlinear function of a 
weighted combination of the current input and the 
previous state.  The feedback of the state allows for 
continuous representations on multiple timescales. The 
output layer is a simple linear combination, shown in (2), 
of the hidden layer states. 
    (1) ))1()(()( 111 −+= nywnxwfny f

 Bnywny += )()( 122    (2) 
Unlike the linear model used in (Wessberg et al., 2000), 
there is no need to use memory at the input layer. This 
reduces the number of free parameters in the input layer 
dramatically (from 1,040 to 104). Memory is created by 
feeding the states of the hidden PEs among themselves. 
Each of the hidden PEs outputs can be thought of as a 
nonlinear adaptive basis of the input space utilized to 
project the large dimensionality data. These projections 
are then linearly combined to form the outputs of the 
RNN that will predict the desired hand movements. The 
MLP from which this topology is derived has been shown 
to be a universal mapper in Rn (Cybenko, 1989). The time 
delay neural network (TDNN) has been also shown to be 
a universal mapper in myopic functional spaces 
(Sandberg et al., 1997). Although no theoretical work to 
prove the universal approximation of the recurrent MLP is 
known, we expect it to display the same universality 
because it can be unfolded in a TDNN (Príncipe et al., 
2000). Hence this network when properly dimensioned 
and trained has the power to find the mapping between 
spike trains and hand positions in 3D space.   
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Figure 1. State Recurrent Fully Connected Neural Network 
 

The most commonly used criterion to adapt the 
parameters of adaptive systems is the mean square error 
between the desired response and the system output 
(Príncipe et al., 2000). Although no analytic solution to 
solve the nonlinear equation of the RNN is known, 
adapting its parameters can be achieved using the gradient 
descent procedure. But since RNNs are recurrent systems, 
gradients display dependencies over time, and so the 
common backpropagation algorithm to train neural 
networks (Rumelhart et al., 1986) cannot be applied 
directly. Here we use the Backpropagation Through Time 
(BPTT) algorithm (Werbos, 1990) to train the RNN. In 
BPTT, the recurrent network is unfolded to create an 
equivalent feedfoward network, with replicated weights, 
which span a time trajectory. The length of this trajectory 
is empirically determined. Input data spanning the 
trajectory is fed to the feedfoward network with a random 
initial state and the PE outputs are stored. An error vector 
is created at the output and fed (reversed in time) through 
the dual network to produce local errors. The weights are 
then updated. Finally, the process begins again for the 
next trajectory. We used the commercial simulator 
NeuroSolutions to train the RNN (Príncipe et al., 2000). 



Sufficiently small stepsizes were chosen to promote 
generalization and ensure stability. Even with small 
step

e assume the hand position, velocity, acceleration, and 
ts are governed by a linear 
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s of 104 neurons are 

sizes, feedback loops in the network can cause 
outputs to oscillate. Since previous states are used in 
future state computations, oscillations propagate and 
cause poor generalization. The network learning must be 
reinitialized in this situation.   Recurrent networks trained 
with gradient descent methods have difficulty learning 
time dependencies in long trajectories. Gradients tend to 
decay exponentially through the trajectory due to the PE 
nonlinearities (Kolen et al., 2001). Training recurrent 
neural networks with BPTT also suffers from a high 
computational complexity. Activations, injected errors, 
and copies of weights have to be stored over a trajectory 
length. For one trajectory T steps long with an N node 
network, BPTT requires O(N2T) computations and O(NT) 
storage (Príncipe et al., 2000). 
 
2.2 Kalman Filtering 
W
the neuronal spike coun
dynamical equation. In this model, the state vector 
is T
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generative model for the spike train data. The linear 
dynamic equation for the sta
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where vk is the zero mean measurement noise with 
covariance V and y is a vector consisting n 
firing pa

 of the neuro
tterns binned in non-overlapping windows. In our 

specific formulation, the output-mapping matrix is 
[ ]1041049140 xx IC =  and the output noise is zero, i.e. 

V=0.
L training samples of xk and yk, and 
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Suppose there are 

ant to determine the model parameters A and W 
using least squares. The optimization problem to be 
solved is given by  
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Once the system
sq ined ( , W) 
can be used in the Kalman filter to generate estimates of 
hand positions form neuronal firing measurements. 

Essentially, the model proposed here assumes a linear 
dynamical relationship between current and future 
trajectory states and spike counts. Since the Kalman filter 
formulation requires a reference output from the model, 
we assign the spike counts, which are the only available 
signals, to the output.  

The Kalman filter is an adaptive implementation of 
the Luenberger observ

mized to minimize the state estimation error variance. 
In real-time operation, the Kalman gain matrix K, is 
updated using the following equations. Before starting 
this recursion, the a priori error covariance matrix 
estimate −P  has to be initialized as well as the state 
vector estimate x̂ . 
 WAP T

kk += −
−

1    (6) 
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3 Simulations 
 
In this section, we wi
o
recorded neural signals. 
 
3.1 Data 
S
collected at
trivirgatus). Microwire electrodes were implanted in 
cortical regions with known motor associations (Nicolelis 
et al., 1997). The firing times of single neurons were 
recorded while the monkey performed a 3-D reaching 
task. The monkey hand position was also recorded (with a 
shared time clock) and digitized with a 200Hz sampling 
rate. The neuronal firings were binned (added) in non-
overlapping windows of 100ms, which represents the 
local firing rate for a neuron. These spike counts were 
directly used as inputs to the RNN and as part of the state 
vector for the Kalman filter. In order to take the monkey’s 
reaction time into account, the spike trains were delayed 
by 0.23 seconds with respect to the hand position. This 
delay was chosen based on loose neurophysiologic 
reasoning, and should be object to optimization in future 
studies.   

A computational difficulty from an adaptive signal 
processing

neuronal data. As a result, most of the computation 
time is wasted on multiplications with zeros. In addition, 
the data displays nonstationary behavior which prevents 
accurate long-term modeling with stationary architectures. 
 
3.2 RNN Results 
T
train a RNN (104x5x



linear output PEs to predict the x, y, and z coordinates of 
the monkey’s hand. Each exemplar of data used for the 
BPTT training algorithm contained a trajectory length of 
thirty samples (3 secs). Weight updates occurred after the 
presentation of 10 exemplars (30 secs). A training set of 
20,010 consecutive bins (2,001 secs) of data was utilized. 
In testing, the network parameters were fixed and 3,000 
consecutive bins (300 secs) of novel neuronal data were 
fed in the network to predict new hand trajectories. The 
testing results are evaluated in terms of the correlation 
coefficients between the actual and estimated hand 
trajectories. The correlation coefficient gives a measure of 
how well the actual and estimated trajectories are linearly 
related. A correlation coefficient value of 1 indicates a 
perfect linear relationship between the two trajectories, 
while 0 indicates no correlation. This measure of success 
must be used with caution since high correlation 
coefficients do not account for biases in the trajectories. A 
second measure of performance developed is the signal to 
error ratio (SER) between the actual and estimated hand 
trajectories. The SER is defined as the square of the 
desired signal divided by the square of the estimation 
error, and it gives a measure of the accuracy of estimated 
position in terms of the error variance. High SERs are 
desired since they reflect segments with small output error 
variance. 

The x, y, and z coordinates of hand trajectories 
during testing are presented in the top subplot of Fig. 2. 
Also

an Filter Results 

Kalman filter contained 
0,000 consecutive time bins (corresponding to 2,000 

 shown in the middle subplot are the correlation 
coefficients between the actual hand position and the 
estimated coordinates, evaluated using a sliding window 
of 40 samples (4 seconds). The window length of 40 was 
selected because each movement spans about 4 seconds. 
Windowed correlation coefficients reached values above 
0.9 while cumulative correlation coefficients (3000 
samples, 300 seconds) were 0.52, 0.71, and 0.71 for the x-
, y-, and z-directions.  The SER shown in the bottom 
subplot of Fig. 2 (computed using the same sliding 
window of 40 samples and averaged over the three 
coordinate directions), reached a value of 31.98. The 
cumulative SER averaged over all coordinate directions 
and the entire test set was 1.58. The estimated hand 
trajectory superimposed on the actual trajectory is shown 
in Fig. 3. 
 
3.3 Kalm
 
The training dataset for the 
2
seconds) of neuronal recordings. During this period the 
matrices A and W were optimized according to the 
training data. The test set consisted of 3,000 consecutive 
time bins immediately following the training set where 
the Kalman filter was predicting the hand movements 
from the neural signals. The Kalman gain was 
continuously adapted during this period. Note that the 
training and testing data used for the Kalman filter and the 

RNN are exactly the same sets. This permits the direct 
comparison of experimental results. 
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Figure 2. The actual hand coordinates of the primate (a), 

correlation coefficient between the actual and estimated hand 

 
coordinates (b), and SER (c) using RNN. 
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Figure 3. Actual and estimated hand coordinates for the testing 

period using RNN. 
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Figure 4. The actual hand coordinates of the primate (a), 

correlation coefficient between the actual and estimated hand 
coordinates (b), and SER using Kalman. 
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Figure 5. Actual and estimated hand coordinates for the testing 

period. 
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trajectories during testing are presented in the top subplot
in the 

elation coefficients between the actual hand position 
the estimated coordinates, evaluated using a sliding 

window of 40 samples (4 seconds). An interesting 
observation we make from these two plots is that the 
estimated hand trajectory shows high correlation with the 
actual one when the primate performs a movement (just 
as in the case of the RNN); in contrast, when its arm is in 
the rest state, the correlation diminishes. For example, 
around 225 seconds, the primate performs a movement 
and a high correlation is achieved, while at 250 seconds 
the hand is stationary and the correlation decreases. 
Windowed correlation coefficients reached values above 
0.9 while cumulative correlation coefficients (3000 
samples, 300 seconds) were 0.55, 0.63, and 0.66 for the x-
, y-, and z-directions.  Windowed SERs shown in the 
bottom subplot of Fig. 4 reached a value of 8.89. Note 
that this value is significantly smaller than the RNN. The 
cumulative SER averaged over all coordinate directions 
and the entire test set was 0.89. The Kalman filter 
produced estimations with noise power that was fifteen 
percent larger than the desired signal. For convenience, 
we also provide the actual and estimated hand position 
over the testing period in Fig. 5. 
 
4 Discussion and Conclusions 
 
In
frameworks to predict 3-D hand positions from
spike populations. They differ in several releva
• The recurrent network is able to find arbitrary 
(nonlinear) mappings from spike trains to hand 
movements, while the Kalman filter is restricted to linear 

apm pings in state space.  
• The RNN does not explicitly create a complete model 
for the data, unlike the Kalman filter; this means that the 
RNN is unable to handle noise in the spike train data.  
• The Kalman filter is 

ou ut and the predicted output given by the optimal 
model. The RNN parameters are all fixed during testing.  

Due to the novelty of this type of neuronal sp
population data and the absence of neurophysiological 
models that could help decide on the most appropriate 
methodology, we decided to experimentally compare 
these two approaches with real data.  

Our results show that during testing, the RNN 
provides a very good fit for the hand movement in the 
reaching part of the trajectories. Large SERs during 
reaching show that RNN estimates have a smaller error 
variance than the Kalman filter and m

target acquisition.  The correlation between true and 
predicted hand trajectories is overall smaller than the 
linear and TDNN models proposed by Wessberg et al.; 
however, during the reaching movements, the two models 
proposed here show very accurate estimations (above 
0.9). We conclude from the plots (Fig. 2 and Fig. 5) that 
the part of the trajectory that is more difficult to model for 
the RNN and the Kalman filter is when the monkey's hand 
is at rest close to the body. Tracking difficulties in the 
resting position can be derived either from a problem of 
the fitting methodology or/and a lack of information in 
the brain derived signals to model that particular 
condition. Further work needs to be conducted to explain 
these experimental findings.   

Although not presented in this paper, we have 
performed estimation tasks for the trained (fixed-
parameter) RNN for long periods of testing data (over 15 
minutes). There is no noticeable progressive degradation 
of the fixed RNN model but w

 is rather repetitive. Nevertheless, due to the 
occurrences of trajectories beyond the 
interpolation/extrapolation ability of the models (using the 
trajectories encountered during training), we noticed few 
instances of low correlation during movement. Therefore, 
larger training sets that span as many different reaching 
positions as possible are necessary for successful 
generalization. 

The optimal state estimation approach regards the 
neuronal firing patterns as the measured output of the 
system, whereas the state variables include these as well 
as the hand position, velocity, and acceleration. This is in 
principle a mo

linear filters trained to find a mapping from the 
neuronal firing patterns to the hand position. The 
proposed model exploits the fact that the future hand 
position is not only a function of the current cortical firing 
patterns, but also the current hand position, velocity, and 
acceleration. However, the experimental results in terms 
of trajectory fit measured with the correlation coefficient 
shows that the results are very similar to the RNN (both 
methods achieve correlation coefficients greater than 0.9 
during reach-out movements). The Kalman predictor does 
a very good job in modeling the large excursions in 
movement, and has difficulty when the hand is at rest, just 
like the RNN. We did not see the expected advantage in 



noise reduction by modeling the data. It seems that for 
this problem the linear mapping in position, velocity and 
acceleration and previous spike counts is sufficient to 
model the unknown relationship with a high degree of 
precision (measured by the correlation coefficient).  In a 
sense the linear state dynamics are as powerful as the 
nonlinear input output model created by the RNN. The 
expected advantage of adapting the Kalman gain to 
decrease the error during testing did not materialize. This 
may be due to a change of optimal parameters over time. 

The training of the two systems should also be 
compared. Here, we think that the Kalman filter has an 
edge, since it uses a very straightforward and well-
established training procedure (least squares). In our 
formulation of the Kalman filter long training data sets 
are 

 modeling procedures are capable of 
app

ences 
 

t arm 
neously recorded neurons in the motor 
re Neuroscience 2(7): 664-670. 

ybenko, G. (1989). "Approximation by superpositions of 

Hay

 of 
ering 82(Series 

Kol  guide to 
 

Mor al 
ng drawing movements: population 

Nicolelis, M. A., A. A. Ghazanfar, B. M. Faggin, S. 

Prín efebvre (2000). 
ugh 

Pusk
plied to 

Rum liams (1986). 
-

San
ensional myopic maps." 

: 477-

Wer hrough Time: 
ings of the 

Wes
ubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. 

 
re 408(6810): 361-365. 

 

required (20,000 bins) because the state equation has a 
large matrix with over 10,000 parameters. We tried other 
model formulations with smaller state vectors (just hand 
position, velocity and acceleration without the spike 
counts), but the trajectory estimates were noisier and 
tended to overshoot the target values. We conclude that to 
obtain good predictions, the spike counts should be 
present in the state vector. The RNN has many parameters 
that need to be tuned to the data, and the computational 
complexity is higher than that of the Kalman filter. In 
particular the trajectory length has to be tuned to the 
application because it should preferably include at least 
one full cycle of the hand movement. In our full 
experimentation to be reported elsewhere, the correlation 
coefficient degrades slowly with the size of the training 
set, but the learning rates have a critical role in the 
accuracy of the final model. Further improvements in the 
training of the RNN are in order. One issue that we did 
not address in this preliminary study is the selection of the 
delay between spike data and hand movements. Since this 
is an unknown parameter, and may even be time varying, 
it should be part of the optimization procedure. Time 
delay estimation is however, a nontrivial problem if brute 
force procedures are to be avoided. For real-time, portable 
implementation (DSPs or FPGAs) both algorithms pose 
challenging problems. Further work to merge the two 
approaches (data modeling and nonlinear mappings) 
seems required to improve the accuracy of the 
predictions.   

We would like to end this paper in a positive note. 
Although the task at hand seems impossible when we 
think of the complexity of the underlying motor 
neurophysiology, we (and other groups) have shown that 
rather simple

roximating to a first order the intricate mappings 
required to predict hand position from neural spike train 
populations. We must however point out that these results 
are just a first step in the design of real-time BMIs. Many 
challenging problems need to be worked out at the 
fundamental science, instrumentation, system architecture 
and modeling levels to deliver an interface that can be 
used by paralyzed subjects. Some of the modeling issues 

are: how to effectively include feedback from the robotic 
arm to the subject; how to choose among many models 
for goal driven behavior; how to create real-time portable 
BMIs.  
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