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ABSTRACT

The problem of estimating n source signals from m measurements
that are an unknown mixture of the sources is known as blind
source separation. In the underdetermined —less measurements
than sources— linear case, the solution process can be conve-
niently divided in three stages: represent the signals in a sparse do-
main, find the mixing matrix, and estimate the sources. In this pa-
per we adhere to that approach and parametrize the performance of
these stages as a function of the sparsity of the signals. To find the
mixing matrix and track its variations in the dynamic case a non-
parametric maximum-likelihood approach based on Parzen win-
dowing is presented. To invert the underdetermined linear problem
we present an estimator that chooses the “best” demixing matrix in
a sample by sample basis by using some previous knowledge of the
statistics of the sources. The results are validated by Montecarlo
simulations.

1. INTRODUCTION

Suppose there exist n unknown random source signals that are
combined in an unknown way to provide m random measure-
ments. If you want to estimate the sources from the measurements
you are faced with a blind source separation (BSS) problem. In the
noise-free linear instantaneous case the observation vector can be
written as a linear transformation on the source vector as

As = x, (1)

where s ∈ R
n is the source random vector, x ∈ R

m is the mea-
surement random vector, and A ∈ R

m×n is the unknown mixing
matrix.

If only x is available, to estimate s can be conceptually de-
vised as a two stage process: first estimate the mixing matrix from
the measurements and then invert the linear problem (1). If the
number of measurements equals the number of sources (m = n)
the problem reduces to estimate the square matrix A [1, 2], since
the linear problem is readily solved by the inverse matrix.

In the underdetermined case, when less measurements than
sources are available (m < n), there is no unique inverse. In fact
there exist an infinite number of source vectors that are solutions
of the linear problem (1). We could say that the “best” solution is
determined by the constraints that one imposes on s on the bases
of some performance criterion or previous knowledge. We will
show that to find a good inversion strategy, it is crucial to be able
to represent the signals in a domain such that a high ratio of the co-
efficients are negligible [3, 4]. Consequently it is very convenient
to parametrically model sources with different degrees of sparsity

and have a framework to characterize the stages of the BSS taking
the sparsity of the sources as a parameter. To that end we use the
following probabilistic model for the distributions of the sources

pSj (sj) = pj δ(sj) + (1 − pj)fSj (sj), j = 1, . . . , n; (2)

where pj is the sparsity factor for source j, δ(·) is the Dirac’s delta,
and fSj (sj) is the density when the corresponding source is active.

The organization of the paper is as follows. On the second
section we show how to estimate the mixing matrix from the mea-
surements both for the static case, in which the mixing matrix is
constant, and for the time-varying case. On the third section we
study the inversion procedure once the mixing matrix has been
estimated and develop a maximum a posteriori (MAP) estimator.
On the fourth section we present the conclusions extracted from
the work and future lines.

2. ESTIMATION OF THE MIXING MATRIX

There have been different approaches to estimate the mixing ma-
trix. Lin et. al use competitive learning in a feature extraction
framework [5]. Bofill and Zibulevsky employ a potential function
based clustering approach [3]. Wu uses eigenspread estimation to
decide when only one source is active, and uses this information
to find the columns of the mixing matrix [6]. In this paper we use
a non-parametric maximum-likelihood approach, based on Parzen
windowing. In this method probability distribution of sample di-
rections is estimated and the peak points are shown to correspond
to the directions defined by the column vectors of the mixing ma-
trix.

Equation (1) can be interpreted from a geometrical point of
view as the projection of the source vectors s from R

n into the
vector space Rm of the measurement vectors x. If we denote by
aj the j-th column of the mixing matrix A, (1) can be rewritten
as x =

Pn
j=1 sjaj , that explicitly shows the measurement vec-

tor as a linear combination of the columns of the mixing matrix.
According to this interpretation, if at a given time only the j-th
source is non zero, the meassurement vector will be collinear with
aj . Scatter-plots of x for a case with two measurements and three
sources are shown in figures 1a and 1c for sparsity factors of 0.1
and 0.8 respectively. Notice that when the histogram of the angle
of samples is considered, as shown in figures 1b and 1d, the three
directions that correspond to the columns of the mixing matrix are
clearly identified. However, the resolution of the histogram-based
estimation of the column vectors is limited by the bin length that is
assumed in evaluating the histogram. To overcome this problem,
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Fig. 1. Scatter plot of measurements and histogram of angles for
sparsity factors 0.1 —(a) and (b)— and 0.8 —(c) and (d).

we propose the use of Parzen windowing [7] to estimate the proba-
bility density of the angle, and then pick the n largest peaks of this
distribution as the estimates for the directions of the n columns of
A.

The Parzen window density estimation for the angle given the
samples and a kernel function κσ(·) is given by

p(θ) =
1

N

NX
i=1

κσ(θ − θi), (3)

where the samples of the angle are evaluated, from θi = arctan(x2/x1).
The zero measurements are simply omitted, as they have no well-
defined angle. Once this density estimation is obtained, we utilize
the steepest ascent algorithm to find the angles corresponding to
the peaks of the density function.

2.1. Static case

In the static case, the mixing matrix is assumed to be constant;
therefore, all the measurement samples can be used in the density
estimation for the angle in a batch-learning scheme. Since we are
looking for the largest n peaks of the estimated density, and we are
going to use steepest ascent, our initial estimates must be in the do-
main of attraction of those solutions that we seek. Accordingly, the
direction estimates obtained from the histogram method are used
as initial conditions to the steepest ascent algorithm. For example,
by using 180 bins in the interval [0, π] we can obtain initial esti-
mates that are closer than one degree to the solutions. Note that
it is sufficient to consider the angles in this interval only, since a
sign ambiguity is acceptable in BSS. Furthermore, we can assume
that the columns of A are unit length, since this corresponds to an
ambiguity in the scaling factor, which is also acceptable in BSS.

Once the initial estimates are obtained from the histogram
method, the following gradient expression of the “cost function”
in (3) is used to refine the estimates until convergence to the max-
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Fig. 2. MSE in angle estimation vs sparsity factor for Parzen win-
dow (using optimal kernel size) and histogram.

imum is achieved

∇θp(θ) =
1

N

NX
i=1

∇κσ(θ − θi).

This procedure is repeated for the n initial conditions provided
by the histogram. Since Parzen windowing provides a continuous
estimate of the density function of interest, in theory it is pos-
sible to achieve a very high resolution, provided that the kernel
size is chosen sufficiently small so that there are no artifact peaks;
whereas in the histogram, in order to increase resolution, more bins
are necessary.

The choice of the kernel size in Parzen windowing is crucial to
an accurate estimation of the correct directions of the columns. For
that end, we have performed a Montecarlo simulation and chosen
the kernel size as the one that minimizes the MSE, defined as

1

M

MX
m=1

1

n

nX
j=1

(θj − θ̂j)
2,

in the estimation of the actual directions (in radians squared); where
M is the number of simulations used in the Montecarlo method.

It is also interesting to investigate the behavior of the MSE of
estimation as a function of the sparsity rate. One would expect
to observe an increasing performance in estimation as the sparsity
increases, since there will be more and more samples that are per-
fectly aligned with the columns compared to the outliers that are
generated as a result of more than one active source.

Figure 2 shows that, just as expected, when the sparsity rate in-
creases the MSE decreases. Another important conclusion drawn
from this plot is that refining the estimates with the Parzen win-
dowing method remarkably improves upon the initial estimates
given by the histogram. Note that, since a steepest ascent algo-
rithm with a fixed step size is utilized in training, the actual max-
ima are not exactly obtained. A portion of the MSE in the Parzen
window method is thus due to this slight misadjustment from the
optimal values. In contrast, a greater portion of the MSE in the
histogram estimates is due to the finite bin length. Assuming a
uniform distribution in each bin of length one degree, the associ-
ated variance would be on the order of 10−5 rad2. We observe that
the results in figure 2 agree with this expectation.



2.2. Dynamic case

In the dynamic case, we assume that the mixing matrix is time
varying, although the mixing procedure is still linear and instan-
taneous. This situation may occur, for example, when there are
fixed microphones in a room and the speakers are moving around,
so that the attenuation experienced by the speech signal until it
reaches the microphone varies with time [8].

In order to track the columns of a changing matrix, the train-
ing algorithm presented in the static case must be slightly mod-
ified. Since the algorithm will try to track the directions of the
columns blindly, a sufficiently accurate initial estimate is crucial.
The static Parzen windowing method can be used to achieve this
initialization assuming that the columns are rotating “slowly” . In
order to initialize the angle estimations, a number of samples must
be collected first. The number of samples required for this initial-
ization procedure can be in the order of hundreds or smaller. Once
the initialization is achieved, a modified version of the steepest as-
cent algorithm is applied to adapt the angle estimates on-line on a
sample-by-sample basis. We use a forgetting factor approach and
estimate the new density using a linear combination of the estimate
from the previous sample and the kernel evaluated at the current
sample. In this case, the cost function, i.e. the density estimate, at
time instant k reads as

pk(θ) = αpk−1(θ) + (1 − α)κσ(θ − θk),

where α is the forgetting factor. This formulation of the density es-
timation also gives rise to a recursive algorithm for the evaluation
of the gradient. The gradient expression to be used in the update at
time instant k, in terms of the gradient from the previous samples
and the kernel function, now becomes

∇k
θp = α∇k−1

θ p + (1 − α)∇κσ(θ − θk),

and is evaluated at the current estimate of the angle θ. In the update
phase, only one of the n angles is updated, and that is determined
by comparing the difference between the angle of the current sam-
ple and the estimates of the angles from the previous update.

A number of simulations have been carried on to evaluate the
performance of this tracking algorithm. It has been determined
that the tracking ability of the algorithm is limited by the first and
second derivatives of the angles of the columns with respect to
time. Using the value 0.9 for the forgetting factor, 3 · 10−3 rad
for the size of the Gaussian kernel, and a step size of 10−7, the
algorithm was able to track signals with first order derivatives on
the order of 10−5 rad/sample [8].

3. ESTIMATION OF THE SOURCES

In the underdetermined case (m < n) the problem (1) has an in-
finite number of solutions, so it is necessary to impose some adi-
tional criterion to select one solution vector s. One possible crite-
rion of general applicability could be to impose some Lp norm of
the solution to be a minimum. Specifically, the solution provided
by the pseudo inverse is the one that minimices the L2 norm of
the solution ||s||, and with no additional knowledge of the statis-
tics of the sources could be the canonical option to choose. As we
will show next, if the signals admit a sparse representation, it is
possible to design better inversion strategies.

The key geometric intuition to develop heuristic inversion pro-
cedures is to think of x as a linear combination of the vectors de-
fined by the columns of the mixing matrix. Consider the case with

m = 2 measurements and n = 3 sources that is shown in figure
1c. If at a given time all the sources are zero, x will be placed at
the origin. If only one source is active, x will be collinear with the
corresponding column vector of the mixing matrix (those are the
three solid lines in figure 1c). There are three different combina-
tions with two sources active at the same time, and since any two
non-collinear vectors are a base of the plane, any x can be due to
any two sources active at the same time. Of course, if the three
sources are all active, x can be placed at any point on the plane.
However, if the sources are sparse enough, the events correspond-
ing to higher number of sources active at the same time will be less
and less probable. According to this, it is possible to derive very
simple heuristic approaches to invert the linear problem (1). The
simplest of these approaches, that we call 1D, consists of consid-
ering that at most one source is active at a given time: a measure-
ment vector is supposed to be due to the column that maximizes
the scalar product with x. Another heuristic approach, that we
call 2DL2, considers that x is a linear combination of two source
vectors; from the three combinations, the one that minimices the
norm of the solution is choosen. In figure 3, the performance of
these heuristic approaches is compared with the pseudo inverse; as
predicted, the heuristic approaches improve as the sparsity of the
sources increases. For a sparsity factor around 0.7, both of them
outperform the pseudo inverse. However, as we show next, by us-
ing the sparse probability model (2) it is possible to obtain even
better estimators.

3.1. Bayesian estimation

If, at any given time, we knew that at most m given components
of the signal are non zero, the problem (1) would not be underde-
termined any more and we could invert it.

Let us denote by C0 the event that all the components of the
source vector are zero at a given time, by Cu the event that only
component su is non-zero, by Cu,v the event that su and sv are the
only non-zero components, and in general by Cu,...,w that only and
all of su, . . . , sw are non-zero at the same time. According to (2),
the a priori probabilities of these events are

p(Cu,...,v) =
Y

j=u,...,w

(1 − pj)
Y

j �=u,...,w

pj .

Next we will consider the conditional densities of the observa-
tions given the events. When all the sources are silent, P (x|C0) =
δ(x). When only source su is active,

p(x|Cu) =
1

|aiu|fSu

�
xi

aiu

�
,

where xi is the ith component of the measurement x correspond-
ing to a non zero matrix component aiu. In general, given that the
event Cu,...,w had occurred, when number of active sources is less
than m,

p(x|Cu,...,w) =
1

|detAu,...,w|
Y

j=u,...,w

fSj (ŝj),

where

Au,...,w =

2
64

aku . . . akw

...
...

alu . . . alw

3
75 ,

2
64

ŝu

...
ŝw

3
75 = A−1

u,...,w

2
64

xk

...
xl

3
75 ,
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Fig. 3. SNR of the source separation by 1D (∗), m-DL2 (�), MAP
estimator (�), and pseudo inverse (solid line).

and the rows k, . . . , l have been choosen from A so that Au,...,w is
invertible. When the number of assumed active sources equals m,
the previous equation still applies by using the complete columns
of A corresponding to the active sources.

By applying Bayes rule, we can calculate the a posteriori prob-
abilities of the defined events given the measurements as

p(Cu,...,w|x) ∝ p(x|Cu,...,w)p(Cu,...,w),

where we evaluate the a posteriori probabilities for all the events
with a number of active sources less than or equal to m. The rest of
the events, corresponding to the cases where the number of active
sources is greater than m, are combined into one single event, C̄,
so that

p(C̄|x) = p(x) −
X

p(Cu,...,w|x).

For estimating p(x) a number of methods are readily available.
Polynomial expansion approaches [9], kernel-based methods [7],
and parametric estimation methods [10] are among the options.
Once the a posteriori probabilities are known for all the events, the
MAP estimator chooses the optimal source estimates correspond-
ing to the event which maximizes the a posteriori probability. If
the selected event is C̄, then the minimum norm solution provided
by the pseudo-inverse is used.

In order to compare the behaviour of the pseudo inverse, the
different heuristic methods, and the MAP estimator, a Montecarlo
simulation has been performed. We have generated 10000 source
vectors s according to (2) with Gaussian fSj (sj). For each value
of the sparsity factor we have randomly generated 500 mixing ma-
trices with uniform distribution on the angles and uniform distri-
bution on the magnitude of the column vectors. As a measure of
the error of the estimation ŝ, we have used the signal to noise ratio,
that is shown in figure 3 as a function of the sparsity factor.

4. CONCLUSIONS

In this paper we have shown that the underdetermined blind source
separation problem can be conveniently separated into three stages:
representation of the signals in an sparse domain, estimation of

the mixing matrix, and inversion of the underdetermined mixing
model. Adhering to this framework, we have parametrized the
source densities by a sparsity factor, so we have focused on the
last two stages, considering the sparsity of the sources as a param-
eter. For the second stage, we have developed a nonparametric
algorithm that has allowed us to estimate the mixing in the static
case and to track its variations in a dynamic environment. For the
third stage, we have developed an MAP estimator that chooses the
“best” inversion matrix on a sample by sample basis. By using ad-
ditional knowledge on the sources, the MAP estimator is shown to
improve performance over both the pseudo inverse —that acts as
a lower bound when there is no sparsity on the sources— and the
heuristic approaches. As a final conclusion, we have shown that
while to find a sparse representation of the signals merely facili-
tates the task of finding the mixing matrix, it is crucial for the last
stage of inverting the linear problem to estimate the sources. When
the original sources do not satisfy the sparsity condition, as is the
case with speech signal in the time domain, a suitable linear trans-
formation (as short-time Fourier tranform or wavelet transform)
could be applied beforehand.
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[8] D. Erdoğmuş, L. Vielva, and J. Prı́ncipe, “Nonparametric es-
timation and tracking of the mixing matrix for underdeter-
mined blind source separation,” in ICA and BSS, (San Diego,
CAL, USA), 2001.

[9] J. H. Friedman, “Exploratory projection pursuit,” Journal
of the American Statistical Association, vol. 82, no. 397,
pp. 249–266, 1987.

[10] A. Papoulis, Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, 3rd ed., 1991.


