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ABSTRACT 
 

Principal Components Analysis (PCA) is an invaluable statistical 
tool in signal processing. In many cases, an on-line algorithm to 
adapt the PCA network to determine the principal projections in 
the input space is desired. Algorithms proposed until now use 
the traditional deflation or the inflation procedure to determine 
the intermediate components sequentially, after the convergence 
of the principal or minor component is achieved. In this paper, 
we propose a constrained linear network and a robust cost 
function to determine any number of principal components 
simultaneously. The topology exploits the fact that the 
eigenvector matrix sought is orthonormal.  A gradient-based 
algorithm named SIPEX-G is also presented 

 
 
 

1. INTRODUCTION 
 

Principal component analysis (PCA) is a fundamental statistical 
technique that has proved its importance in numerous signal-
processing applications including, but not limited to, feature 
extraction, signal estimation, detection, and speech separation [1-
4]. Linear discriminant analysis (LDA) [5] is another example 
where the solution requires estimates of generalized eigenvalues. 
There are many algorithms that have been proposed for solving 
the PCA problem both off-line and on-line; Oja’s rule [6] opened 
the door for many other useful on-line PCA algorithms including 
Sanger’s rule [7], APEX [2] and Rubner and Tavan’s method 
[8,9]. These topologies and their associated algorithms have been 
successfully applied to many problems of signal processing. 
However, they have shortcomings in speed of convergence 
mainly due to the fact that they are gradient algorithms and they 
depend heavily on the deflation procedure, which prevents the 
principal components from converging simultaneously. Although 
APEX and Rubner-Tavan networks achieve deflation using a 
lateral network of weights in the output layer, the convergence of 
the minor components is far from satisfactory. There are well-
known fixed-point rules for PCA adaptation, which converge 
much faster than the slow gradient methods [5], [10]. However, 
they still use the deflation scheme to determine the subsequent 
principal components after the first principal component has 

converged. Xu’s LMSER algorithm uses subspace techniques and 
a scalar amplification matrix to extract principal components 
simultaneously [11]. But, the convergence of LMSER is slow as 
it uses a simple gradient method to optimize an unconstrained 
network. In this paper, we present an on-line algorithm that 
converges to all eigenvectors simultaneously using a novel cost 
function by exploiting two key facts. The matrix that we seek, as 
the solution to the PCA problem, is an orthonormal matrix and 
the sum of the output variances are maximized for any number of 
primary components corresponding to the largest eigenvalues 
when their weight vectors are aligned with their corresponding 
eigenvectors. The performance of the proposed SIPEX-G 
algorithm is compared with that of Sanger’s rule and Xu’s 
LMSER algorithm. 

 
2. COST FUNCTION 

 
It is well known that the directions of the principal components 
are given by the eigenvectors of the covariance matrix of the 
input data, ordered according to their corresponding eigenvalues 
in descending order of magnitude [12]. Thus, PCA is nothing 
more than a coordinate transformation on the data, where in the 
new coordinate system the axes are aligned with the directions of 
maximal variation. This immediately points out that, the search 
for the weights of a principal component network can be 
restricted to the set of orthonormal matrices, since every 
orthonormal transformation corresponds to an axes-rotation on 
the input vector space. Consider the principal component 
network with y=Rx, where 1nxx ℜ∈  and 1nxy ℜ∈  are the input 

and output vectors respectively, and nxnDR ℜ⊂∈  is the weight 
matrix, which is restricted to the subset D of orthonormal 
matrices. The cost function in (1) could be maximized (or 
minimized) in order to determine the principal components of the 
input data, whose covariance matrix is given by xΣ . The scalar 

gains γo are chosen in descending order such that γ1>γ2>…>γn-

1>0. Thus the cost function is just the weighted sum of first (n-
1) output variances. In the subsequent discussions, we assume 
that the input data x  is zero-mean, without loss of generality. 
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Theorem 1: For the constrained network where the weight 
matrix R is an orthonormal matrix, the function J in (1) has a 
stationary point if and only if the rows of R consist of all the 
eigenvectors of Σx.  
Proof: In the Appendix. 
Lemma 1:  There is a total of n! stationary points of J of which 
(n-1)! are local maxima, (n-1)! are local minima, and (n-2)(n-1)! 
are saddle points. 
Proof: This follows easily from the ideas in the proof of Thm. 1. 

Note that all stationary points of J(R) are valid PCA 
solutions and if necessary, ordering can be done easily by 
observing the output variances estimated in J. This theorem 
practically states that, we can adapt a rotation matrix (in batch 
mode or on a sample-by-sample basis) in order to obtain all the 
principal components of the input data at the output of this 
linear network. It is also possible to include in the cost function 
given in (1), only the variances of the first m outputs, which will 
result in convergence of the first m rows of the rotation matrix to 
the first m principal components. This case however, requires 
careful choice of the gains. Although the proof of this fact 
follows the same principals as the proof of Thm. 1, it is more 
involved and therefore we omit it in this paper to save space. 

 
3. GIVENS ROTATIONS 

 
Every orthonormal matrix can be considered a rotation matrix, 
thus they can be parameterized in terms of Givens rotation 
angles, each of which define a rotation in a single plane of the 
high-dimensional vector space. Then, these individual rotations 
can be cascaded to span the whole set of rotation matrices.  
Every rotation matrix has a unique set of Gives rotation angles 
that characterize it. In n-dimensions, a Givens rotation matrix in 
the plane formed by the ith and jth axes is denoted by Rij, and is 
given by an identity matrix whose four entries at the intersection 
of ith and jth rows with ith and jth columns are modified as follows: 
The (i,i)th and (j,j)th entries are cosθij, and the (i,j)th and (j,i)th 
entries are -sinθij and sinθij, respectively [13]. A rotation matrix 
is then formed from these sparse matrices according to 
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The multiplication order can be always from the left or 
always from the right. It is not crucial to the generality of this 
formula as long as we maintain the same order when taking the 
derivative of the matrix with respect to a rotation angle.  
 

4. ADAPTATION ALGORITHM: SIPEX-G 
 
Our aim is to solve the following constrained optimization 
problem that becomes unconstrained if Givens angles are used. 
Problem: Let nklnkkl ,,1,1,,1, KK +=−=θ  be the Givens 

rotation angles that form up our parameter vector Θ . The cost 
function is explicitly given by 
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where, ijR  is the (i,j)th entry of the rotation matrix R , which is 

constructed using the Givens angles as shown in (2). 
The variances of each output component are evaluated using 

the covariance matrix of the input data and the entries of the 
rotation matrix, as clearly seen from (3). The reason for this is to 
obtain robust performance when this approach is used on-line, 
where the rotation matrix is updated after every new sample. If 
we were to estimate the output variances directly from the 
output samples then, due to the variation of the rotation matrix 
from sample to sample, it would be impossible to obtain an 
accurate estimate of the current value of the cost function. On the 
other hand, formulating the output variance in terms of the input 
covariance matrix and the current values of the rotation matrix 
allows us to use robust sample-by-sample updates to our 
estimation of the input covariance matrix, both in stationary or 
non-stationary environments using a suitable forgetting factor.  
Thus, in order to solve this optimization problem in an on-line 
fashion, we present the algorithm outlined below. 
Algorithm:  Simultaneous principal component extraction using 
the gradient approach (SIPEX-G) 
Step 1. Initialize Givens angles (randomly or to all zeros so 
that the initial rotation matrix is the identity matrix). 
Step 2. Use the first N>n samples of the input data to obtain 
an unbiased estimate to the covariance matrix xΣ .  
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Step 3. In non-WSS environments, update the covariance 
estimate with the following recursive formula. 
 T

kkxx xxkRkR αα +−−= )1()1()(                     (5) 

The memory depth of this recursion is α/1 . If the input data is 
WSS, the following unbiased recursion may be used. 
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Step 4. Calculate the gradient of the cost function with respect 
to the Givens angles using the covariance estimate in (5) or (6) in 
place of the actual covariance matrix in (3). This gradient is  
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Step 5. Update the Givens angles using gradient ascent. 
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Step 6. Go back to step 3 and continue until convergence. 
 Using this algorithm, it is also possible to extract any 
desired number of principal components simultaneously. To 
determine the largest nm <  principal components, the upper 
limit for the summation index o in (3) and all the succeeding 
equations must be replaced by m. If 1−= nm , the algorithm 
finds all of the n principal components, as once the first 1−n  
components are determined, the last one is automatically set.  



Alternatively, one can minimize the cost function using the same 
algorithm except for a negative sign on the gradient to obtain m 
minor components of the input data. 
 A key concern in many adaptive algorithms is the 
computational complexity.  It is clear that if the multiplications 
in (2) are performed from the left, the first output is only 
affected from the Givens angles with indices θ1q, q=2,…,n, the 
second is affected by all the angles θ1q, q=1,…,n and θ2q, 
q=3,…,n, and so on. Thus, if we wish to extract the first m 
principal components, we only need to adapt the angles θij, 
i=1,…,m, j=i+1,…,n, which makes a total of mn-m(m+1)/2 
parameters, which is less than the mn parameters required in 
many PCA algorithms. But then, we will have to evaluate either 
the sin or cos of all these parameters once. In addition, the 
necessary matrix and vector multiplications in the algorithm will 
be performed at each iteration, which amount to O(n2). 
 

5. CASE STUDIES  
 
Consider the determination of the principal components of a 
three-dimensional Gaussian distribution with a randomly selected 
covariance matrix. The eigenspread of the chosen input 
covariance matrix is quite high.  Specifically, the eigenvalues are 
8.42, 0.45, and 0.02. We compare the performance of SIPEX-G 
with that of Sanger’s rule. Both algorithms are initialized to the 
identity matrix. The step sizes of both algorithms are 
experimentally set such that the convergence of the first principal 
component is achieved in approximately 500 samples 
(iterations). With SIPEX-G, all three eigenvectors converged in 
less than 2000 samples almost simultaneously, with the 
designated step size. Sanger’s rule took 3500 samples for the 
convergence of the second eigenvector and more than 10000 
samples for the third. These results are summarized in Fig. 1, 
where the convergence of the direction cosines between the 
estimated and actual eigenvectors for both algorithms is 
presented. Recall that the value of 1± for the direction cosine 
means the two vectors are perfectly aligned. 

As a second example, we consider a real world time series 
collected from a violin playing a single note. The 1000-sample 
time series is stationary. Using a 4-delay-line 5-D input samples 
for each time step are obtained. Both SIPEX-G algorithm and 
Xu’s LMSER algorithm are applied to the same data set to 
extract the five principal components. The step sizes of both 
algorithms are set to yield convergence of the first component in 
approximately 500 iterations. Fig. 2 shows the convergence 
results for these algorithms in terms of the direction cosines 
between the estimated and the true eigenvectors (determined 
using the complete data set off-line). SIPEX-G converges to all 
eigenvectors in less than 1000 iterations whereas LMSER gives 
only the first two components for the same number of iterations. 
The LMSER uses a scalar amplification matrix similar to the 
scalar gains we use for weighting the output variances. It does 
not, however, explicitly constrain the norms of the weight 
vectors and uses a slow gradient subspace algorithm for updating 
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Figure 1. Multivariate Gaussian data: Direction cosines between 
the estimated and actual eigenvectors. 
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Figure 2. Violin time-series: Direction cosines between the 
estimated and actual eigenvectors.  

 
the weights. In contrast, SIPEX-G always uses a rotation matrix, 
which reduces the search to the set of orthonormal matrices. This 
vastly improves the speed of convergence over LMSER or any 
other gradient method. 

The scalar gains of SIPEX-G were set to {3,2} in the first 
case and to {5,4,3,2} in the second example. For LMSER, in the 
second example, the gains were selected to be {5,4,3,2,1}. These 
gains help remove the plateau that might exist near the optima 
when the eigenspread of the data is high which can otherwise 
slow down the convergence of the weights to optimal values.   

 
6. CONCLUSIONS 

 
PCA is a crucial part of statistical signal processing and there are 
many on-line algorithms in the literature that determine the 
eigenvectors of the input covariance matrix. These algorithms, 
however, do not exploit the fact that the solution we seek for the 
weight matrix lies in the subset of orthonormal matrices. Due to 
this, many algorithms rely on deflation to obtain each eigenvector 
in a descending order sequentially. In this paper, we have 
addressed this question about the existence of on-line PCA 
algorithms that avoid the process of deflation and converge to all 
the desired principal components of the data simultaneously.   
 Exploiting the fact that the solution lies within the set of 
orthonormal matrices, we have parameterized the weight matrix 



of the linear PCA network using the Givens rotation angles.  
Furthermore, we have suggested a cost function, of which all 
stationary points are valid PCA solutions, to optimize these 
parameters and proved that its global maximum occurs at the 
desired eigenvector matrix. Additional advantages of the 
proposed approach, which we named SIPEX-G, are that the 
orthonormality of the estimated eigenvectors is guaranteed at 
every iteration and that the cost function can alternatively be 
minimized to obtain the minor components of the data. On the 
other hand, since the cost function explicitly depends on the 
output variances, and we still use a gradient approach, the 
convergence is still dependent on the  step size. Future work 
would be directed towards the development of a fixed-point 
algorithm to further increase the efficiency of the algorithm and 
also to reduce the computational burden.  
Acknowledgments: This work is partially supported by  NSF 
grant ECS-9900394.  
 

APPENDIX 
 

Proof of Theorem 1:  Due to limited space, we will not give the 
complete details of the proof, but only sketch the methodology. 
The covariance matrix of the output vector is given by 

T
xy RRΣ=Σ , whose diagonal entries correspond to the variances 

of the corresponding outputs, i.e. ooyoyVar ,)( Σ= .  An arbitrary 

rotation matrix can be decomposed into two orthonormal 
matrices T

xQRR = , where xQ  is the ordered eigenvector matrix 

for the input covariance matrix.  Thus we can consider R as the 
optimization variable (parameterized in terms of Givens angles).   
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In order to prove that only permutation matrices for R  are 
stationary points, we consider )(RJ  and )( RRJ δ+ , where 

Rδ  is a perturbation matrix that satisfies the orthonormality 

constraint IRRRR T =++ )()( δδ .  Both the original and 

perturbed matrices must also satisfy the magnitude constraint on 
their individual entries, i.e. 1|| ≤ijr . Now, considering two 

perturbations Rδ±  to PR ≠ , where P is a permutation 

matrix, we observe that the cost function both increases and 
decreases in one of these perturbation directions.  Thus, we 
conclude that any rotation matrix R, which is not a permutation 
of the eigenvectors, is not a stationary point.  The magnitude 
constraint on the entries prevents this conclusion from applying 
to permutation matrices.  
 In order to prove that all permutations of the eigenvector 
matrix, i.e. all cases where PR =  are stationary points, we 
express R  parametrically in terms of Givens rotations as 
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where pqθ  are the Givens angles.  Noticing that each and every 

permutation matrix corresponds to the case where these Givens 
angles are integer multiples of 2/π , one can show with brute 
force method that the gradient in (7) vanishes because each term 
of the summation becomes zero.  Thus we conclude that every 
permutation of the eigenvector matrix is a stationary point of J.
 Combining these two results, we conclude that the function 
J(R) has a stationary point when and only when the rotation 
matrix is a permutation of the eigenvector matrix. 
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