
ABSTRACT

The MeRMaId (Minimum Renyi’s Mutual Information)
algorithm for BSS (blind source separation) has previously
been shown to outperform several popular algorithms in
terms of data efficiency. The algorithms it compared favor-
ably with include Hyvarinen’s FastICA, Bell and
Sejnowski’s Infomax, and Comon’s MMI (Minimum
Mutual Information) methods. The drawback is that the
MeRMaId algorithm has a computational complexity of
O(L2), as compared to O(L) for the other three. However, a
new advancement referred to as SIG (Stochastic Informa-
tion Gradient), can be used to modify the MeRMaId crite-
rion such that the complexity is reduced to O(L). The
modified criterion is then applied to the separation of
instantaneously mixed sources using an on-line implemen-
tation. Simulations demonstrate that the new algorithm
preserves the separation performance of the original algo-
rithm and, in fact, compares quite favorably with several
published methods.

1. INTRODUCTION

Oftentimes, it seems that some of the simplest ideas turn
out to be the most useful. Take for instance the approxima-
tion that Widrow used in the steepest descent algorithm for
minimizing the mean square error [1]. By using the instan-
taneous value of the mean square error in place of the
expected value, an algorithm was developed whose use has
since become ubiquitous. In fact, the algorithm, known as
LMS (Least Mean Square), is nearly synonymous with
gradient descent learning.

An analogous idea can also be applied to reduce the
complexity of the mutual information criterion used in the
MeRMaId algorithm, originally presented in [2]. In the
MeRMaId algorithm, the update is found by utilizing all
combinations of pairwise interactions of information parti-
cles. An “instantaneous” version of this also uses pairwise

interactions, but considers only the pairwise interactions
occurring between consecutive samples. The modification
that allows the simplification of the MeRMaId algorithm is
referred to as the Stochastic Information Gradient, or SIG,
and the algorithm so modified is referred to as MeRMaId-
SIG.

In the next section, the system used for instantaneous
mixing and demixing is described, along with the associ-
ated notations. A brief review of the MeRMaId algorithm
is then given, as well as the derivation of the SIG modifi-
cation. Following this is a section which has several plots
that show the separation performance results from a set of
Monte Carlo simulations, and another set of plots that
demonstrate the ability of the algorithm to track a time-
varying mixing environment.

2. SYSTEM DESCRIPTION

The block diagram for a BSS system with N = 2 inputs and
observations is given in Figure 1. Commonly, as is the case
here, a pre-processor is used that spheres, or spatially whit-
ens, the data. In this figure, the inputs are denoted as si(n),
the (whitened) observations as xi(n), and the outputs as
yi(n), where i = {1, 2, ..., N} and n = {1, 2, ..., L}. For sake
of convenience, the sources will be assumed to be zero-
mean. 
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x1(n)
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    Fig. 1. Block diagram for BSS of N = 2 sources
                            and observations.
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The equations for N sources/observations for instanta-
neously mixed sources are given in matrix notation as, x =
WTHTs and y = RTx, where s, x, and y are the (N x L)
source, sphered observation, and output matrices, respec-
tively. In addition, H is the (N x N) mixing (channel)
matrix, W = ΦΛ-1/2 is the (N x N) sphering matrix, Φ is the
matrix of eigenvectors of the autocorrelation of HTs, Λ is
the corresponding eigenvalue matrix, and R is the (N x N)
demixing matrix. Notice that, due to the spatial whitening,
E[xxT] = IN, the (N x N) identity matrix.

It is known that, for instantaneous mixtures, the BSS
problem can be decomposed into sphering followed by an
orthogonal matrix transformation (rotation) [3]. The MeR-
MaId algorithm makes use of this fact; therefore, the
demixing matrix, R, is constrained to be a pure rotation. In
this case, R is constructed from the product of N(N-1)/2
Givens rotations matrices [4], Rij, where Rij equals IN with
elements IN(i,i), IN(i,j), IN(j,i), and IN(j,j) modified to cos-
θij, -sinθij, sinθij, and cosθij, respectively, and IN(i,j) is the

element of IN located at the ith row and the jth column, i =
{1, 2, ..., N}, and j = {i+1, i+2, ..., N}. The gradient of R
with respect to θij is denoted as �Rij. This is equal to ON,
an (N x N) matrix of zeros, with the elements ON(i,i),
ON(i,j), ON(j,i), and ON(j,j) modified to -sinθij, -cosθij,
cosθij, and -sinθij, respectively. An equivalent but more
efficient formulation for the product of multiple Givens
rotation matrices is provided in [5]. Notice that W is deter-
mined using second-order statistics, as previously
explained, so the only item left to train in order to perform
separation is the rotation matrix, R. This is equivalent to
finding the N(N-1)/2 rotation angles, θij.

3. MeRMaId ALGORITHM

The MeRMaId algorithm is based on minimizing the
Renyi’s mutual information between the outputs, where
Renyi’s mutual information is given as [6],

In the case of Shannon’s entropy, the mutual information
can be written as the sum of marginal entropies minus the
joint entropy. This is not the case for Renyi’s information.
Instead, the sum of (Renyi’s) marginal entropies minus the
(Renyi’s) joint entropy yields,

Notice, however, that both (1) and (2) are minimized when
and only when the joint pdf (probability density function)
of y is equal to the product of the marginal pdf’s of yi, i =
{1, 2, ..., N}. When this occurs, the outputs, yi, are consid-
ered to be statistically independent. As long as the number
of Gaussian distributed sources is no more than one, this is
precisely the requirement for separating statistically inde-
pendent sources [3]. Therefore, when the conditions for
separability are met (i.e. sources are statistically indepen-
dent and there is at most one Gaussian distributed source),
minimizing (2) is equivalent to minimizing (1). This is the
basis for the formulation of the MeRMaId algorithm. The
formulation in (2) is preferred over (1) due to the existence
of a non-parametric estimator for Renyi’s entropy [7],
along with the fact that, as discussed next, equation (2)
allows a further simplification.

MeRMaId uses Parzen windows for pdf estimation,
and the joint entropy in (2) involves an N-dimensional pdf.
A well known result for Parzen windows is that a linear
increase in the dimensionality (in this case, caused by a
linear increase in the number of sources) requires an expo-
nential increase in the number of data samples for a given
accuracy, a result referred to as the “curse of dimensional-
ity” [8]. Therefore, as the number of sources increases lin-
early, an algorithm based on (2) would require an
exponential increase in the block size, L, to maintain a
similar performance. This would cause the complexity,
which is O(L2), to increase exponentially. However, this is
circumvented in the MeRMaId algorithm since Renyi’s
entropy is invariant to rotations [6]. Hence, the joint
entropy can be discarded, reducing the cost function to the
sum of marginal entropies,
 

When Parzen windowing is used with a Gaussian ker-
nel, the marginal pdf’s are estimated as,
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where G(x,σ2) is a Gaussian pdf evaluated at x, having
zero-mean and a variance of σ2, and yi(j) is the jth sample
of output yi. When this is substituted into the equation for
Renyi’s quadratic (alpha = 2) marginal entropy,

the following estimate for Renyi’s quadratic marginal
entropy is produced,

A nice feature of this derivation is that the infinite
limit integral disappears without the need of any approxi-
mations or truncations [2]. Substituting (6) into (3) and
taking the derivative with respect to θij produces (7) where

(�Rij)k is the kth column of �Rij and x(m) is the (N x 1)
vector of x at time m. The overall update equation for sto-
chastic gradient descent is then Θ(n+1) = Θ(n) - η∆Θ(n),
where Θ(n) and ∆Θ(n) are (N(N-1)/2 x 1) vectors of angles
and η is the step size. Due to the orthogonal constraint, the
number of adaptable parameters for the demixing matrix
(ignoring sphering) for MeRMaId and Comon’s MMI
methods, N(N-1)/2, is approximately 1/2 of that for most
other algorithms, such as Infomax and FastICA, which is
either N2 or N(N-1).

4. MeRMaId-SIG

Equation (7) is the update equation for the rotation angles,
which has complexity O(L2). A straightforward method to

reduce the complexity, credited to Erdogmus [9], is to use
an idea analogous to the simplification of gradient descent
that led to the LMS algorithm. Namely, the exact gradient
expression is replaced with the “instantaneous” value of
the gradient. In this case, the double summation in (7),
which indexes all possible combinations of pairs of sam-
ples, is replaced with a single summation that indexes only
the pairs of samples that occur consecutively. The resulting
update equation, which has complexity of O(L), is given
by (8), where i = {1, 2, ..., N}, j = {i+1, i+2, ..., N}, the
overbar represents the angle update using SIG and the sub-
script of L determines the number of samples before the
accumulated update is applied to the demixing matrix.

It is well known that the instantaneous gradient used
in LMS converges in the mean to the actual gradient. Like-
wise, in [9], it is shown that the SIG update given by (8)
converges in the mean to the actual information gradient
given by (7), in the vicinity of the optimal solution. There-
fore, there is good reason to believe that the asymptotic
performance of the MeRMaId-SIG method will be similar
to the original method (assuming the globally optimal
solution is found).

The tap weights (or rotation angles, in this case) for
MeRMaId-SIG are updated every L samples. This update
is found by accumulating the individual contributions
computed at each unit of time. Notice that only one mem-
ory element (as compared to L memory elements for batch
methods) is needed for each input and each output of the
demixer, and that the contribution to the update equation at
each unit of time consists of two subtractions, four multi-
plications, and one function evaluation (per observation).
Herein lies the advantage of using the Stochastic Informa-
tion Gradient. Although SIG reduces the complexity to
O(L), (perhaps) the main utility is that it allows the infor-
mation theoretic criterion to be adapted in an on-line fash-
ion.

Figure 2 shows the tap weight (angle) tracks for the
case of N = 2 instantaneously mixed sources. The value of
L was (somewhat arbitrarily) set to 200 and the width
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parameter for Parzen windowing, σ, was set to 0.25.
Unless otherwise stated, these values are used throughout.
The correct solution for this mixture is π/4 radians. For
each of the ten simulations, a different pair of sources was
used. Notice that the solutions all converged to either π/4
or - π/4. Both are valid solutions since a rotation of kπ/2,
for k any integer, from any solution is another viable solu-
tion. The difference between these multiple solutions is
that the outputs are permuted and/or have a change in sign
(with respect to a given solution), which are identically the
indeterminacies for BSS.

An instantaneous mixture of ten sources, including
speech from five male speakers and four female speakers
and a segment of music, was used to compare the (stan-
dard) MeRMaId and the MeRMaId-SIG algorithms. The
mixing coefficients were chosen uniformly in [-1,1] and
the performance measure was chosen to be the SDR, sig-
nal-to-distortion ratio, defined as,

where q = HWR, qi is the ith column of q, and max(qi) is
the maximum element of qi. This criterion effectively
measures the distance of the overall mixing matrix, q,
from the product of a permutation matrix and a diagonal
matrix.

Figure 3 shows the results of the comparison. Three
different results are shown for MeRMaId, each using a dif-
ferent randomly selected 200 data samples. Notice how
much smoother MeRMaId is than MeRMaId-SIG (this is

still true if the step size is reduced somewhat so that both
converge in approximately the same number of iterations).
This can be expected when using the “instantaneous” value
of the information gradient. Keep in mind that an SDR of
20 dB corresponds to nearly inaudible interference. For
this comparison, the MeRMaId algorithm operates in batch
mode. To wit, the 200 data samples from a given trial are
used as many times as is necessary for convergence (in this
example, the 200 data points are each used 70,000/200 =
350 times), whereas the MeRMaId-SIG method uses each
of the 70,000 data samples exactly once.

Another comparison, shown in Figure 4, is an attempt
to compare several algorithms in a manner consistent with
real-time operation. In other words, each algorithm will
see the data samples (in proper temporal order) only once,
tap weight updates will occur every L = 1000 samples, and
the memory elements (with the exception of a single mem-
ory element for MeRMaId-SIG) required for batch mode
operation are not allowed. Unlike in the previous paper [2],
results are not shown for Comon’s MMI [3] and
Hyvarinen’s FastICA [11] algorithms since both are essen-
tially batch methods. Therefore, the comparison is limited
to the MeRMaId-SIG and Bell and Sejnowski’s Infomax
[10] methods, as well as one additional on-line, informa-
tion-theoretic algorithm, Yang’s MMI method [12].

All three methods utilize spatial pre-whitening. In
addition, the Infomax and Yang’s MMI methods use
Amari’s natural gradient [13], and Yang’s method uses the
adaptive scheme for calculating cumulants. The step sizes
for all methods were chosen at or near the maximum val-
ues, such that convergence was obtained as quickly as pos-
sible. A total of 20 Monte Carlo simulations were run for
each method, where the mixing matrix was selected uni-
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Fig. 3. SDR versus time for MeRMaId with
       and without SIG for N = 10 sources.
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formly in [-1,1] for each simulation. The data consists of
8.5 seconds of N = 2 speech sources, sampled at a rate of
16.384 kHz. Adaptation does not occur immediately
because both of the sources are silent for the first 0.5 sec-
onds. As can be seen from the ensemble-averaged plots in
Figure 4, the MeRMaId-SIG method produces an SDR of
20 dB in only 0.4 real-time seconds (neglecting the first
0.5 seconds of silence), whereas Infomax took 4.2 real-
time seconds, or a magnitude of order longer.  Yang’s MMI
method was able to reach SDR values of over 40 dB, but it
consistently required much more than the 8.5 seconds of
data used in this comparison (it took on the order of 30
real-time seconds to reach 20 dB SDR). In fact, the perfor-
mance of Yang’s MMI method for the first 10-15 seconds
of data actually dropped slightly from the initial value.
Larger step sizes were tried for both the Infomax and
Yang’s MMI algorithms, but they resulted in instability in
the adaptation.

The comparison above was for a static environment,
that is to say, the mixing matrix was held constant during
the entire presentation. In a more realistic environment, the
mixing matrix is a function of time (for hearing aid appli-
cations, the mixing is also convolutive, but that is not
addressed here). Figures 5 and 6 show several different
scenarios in which the mixing matrix was changed during
the presentation of the 10.7 real-time seconds of N = 2
speech sources. In both cases, only the rotation angle of
the mixing matrix is varied. The advantage of changing
only the rotation angle is that the result is invariant to the
method employed for sphering the data (a stage that is
common to most BSS methods). The drawback is that BSS
methods that do not constrain the demixing matrix to be a
pure rotation can not be accurately tested in this fashion.

For this reason, only the results for the MeRMaId-SIG
algorithm are given.

Figure 5 shows the result for the case that the rotation
angle of the mixing matrix is initially at 45o. The rotation
angle is then changed to 90o after a little over 3 seconds
have expired, 112.5o at time equal to 6 seconds, and to
135o at around time equal to 9 seconds. The staircase in
this figure corresponds to the input rotation angle and the
second line is the rotation angle found using the MeR-
MaId-SIG algorithm. Figure 6 shows 3 separate examples
where the mixing matrix is initially at 0o and is then varied
linearly as a function of time using 3 different velocities.
As can be seen in the two figures, the MeRMaId-SIG algo-

Fig. 4. SDR versus time for on-line implementations
of MeRMaId-SIG, Infomax, and Yang’s MMI (N = 2).
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rithm is able to track the change in the mixing matrix quite
well.

5. CONCLUSIONS

The Stochastic Information Gradient, despite (or perhaps,
because of) it’s simplicity, turns out to be a very useful
approximation. In applications that require real-time
implementations, SIG allows the use of the MeRMaId
algorithm, which was previously shown to be extremely
data efficient. The MeRMaId-SIG algorithm retains the
data efficiency of the original algorithm and has been dem-
onstrated to perform noticeably better than Bell and
Sejnowski’s Infomax and Yang’s MMI (natural gradient)
algorithms in a real-time application. These results indi-
cate, at least for instantaneous mixtures, that there is hope
of tracking a rapidly changing environment using a real-
time, information-theoretic algorithm. Future work will
consist of using a time-varying mixing matrix that has a
corresponding physical correlate in terms of locations and
velocities of speakers. This will be a more realistic sce-
nario and, furthermore, will allow the comparison of the
competing on-line BSS methods.
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