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� Computational NeuroEngineering Laboratory, University of Florida, Gainesville, FL
F Communications Engineering Laboratory, Universidad de Cantabria, Spain

E-mail: fdeniz, principeg@cnel.ufl.edu, luis@dicom.unican.es

ABSTRACT

Blind source separation deals with the problem of estimat-
ing n source signals from m measurements, which are gen-
erated through an unknown mixing process. In the underde-
termined linear case, where the number of measurements is
smaller than the number of sources, the solution can be ob-
tained in three stages: find a sparse representation domain
for the signals, find the mixing matrix, and estimate the
sources using the previous knowledge. This paper addresses
the second stage. A non-parametric maximum-likelihood
approach based on Parzen windowing is presented. It is
shown that the peak points in the probability distribution of
measurements directions correspond to the directions of the
column vectors of the mixing matrix. An algorithm to esti-
mate the column vectors in the static case, and to track the
column vectors in the dynamic case is presented. The track-
ing capability of the algorithm is determined and, using a
simple wave propagation model, corresponding limitations
on the speeds of mobile sources are derived.

1. INTRODUCTION

The blind source separation (BSS) problem is defined as
the identification of the n unknown statistically independent
source signals from m observations, which are generated
by an unknown mixing procedure. In the noise-free linear
instantaneous underdetermined case, the number of obser-
vations is smaller than the number of sources and one can
write the observation vector as a linear transformation on
the source vector as

As = x:

If the signals are sufficiently sparse, or if a suitable sparse
transformation can be applied, the sources can be estimated
from the measurements once the mixing matrix is known
[1], [2]. There have been different approaches taken to-
wards estimating the mixing matrix. Lin et. al use compet-
itive learning in a feature extraction framework [3]. Bofill
and Zibulevsky employ a potential function based clustering
approach [4]. On the other side, Wu uses an eigenspread

estimation to decide when only one source is active, and
uses this information to find the columns of the mixing ma-
trix [5]. In this paper we use a non-parametric maximum-
likelihood approach, based on Parzen windowing. In this
method probability distribution of sample directions is non-
parametrically estimated and the peak points are shown to
correspond to the directions that define the column vectors
of the mixing matrix. Two different versions of the training
algorithm are provided, one for both the static and one for
the dynamic case. The limitations on the tracking capability
of the algorithm are determined and, using a simple wave
propagation model, corresponding limitations on the speeds
of mobile sources are derived.

2. ESTIMATION OF THE MIXING MATRIX

Suppose the following sparse model describes the source
distributions,

pSj
(sj) = pj Æ(sj)+(1�pj)fSj

(sj); j = 1; : : : ; n; (1)

where pj is the sparsity factor for source j, and fSj
is the

density when the source is active. In addition, it is assumed
that the sources are zero-mean. If the sparsity factor is large,
quite often a number of sources will be silent at a given
time instant, and occasionally only one source will produce
a nonzero signal. When this is the case, the measurement at
that instant will be collinear with the corresponding column
of the mixing matrix. The scatter-plot of one such mixing
process with two measurements and three sources, where all
the sources have a fixed sparsity factor of 0.2 is presented
in figure 1a. Notice that when the histogram of the angle
of samples is considered, as shown in figure 1b, the three
directions designated by the columns of the mixing matrix
are clearly identified. It is remarkable that even with spar-
sity factors of as low as 10%, it is possible to distinguish
from the histogram of the angle of samples the columns of
A. However, the resolution of the histogram-based estima-
tion of the column vectors is directly determined by the bin
length that is assumed in evaluating the histogram. To over-
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Fig. 1. Scatter plot of measurements and histogram of an-
gles for sparsity factors 0.1 —(a) and (b)— and 0.8 —(c)
and (d).

come this problem, we propose the use of Parzen window-
ing [6] to estimate the probability density of the angle, and
then pick the n largest peaks of this distribution as the es-
timates for the directions of the n columns of the mixing
matrix A. In this paper, we restrict ourselves to the three
source-two measurement case in order to be able to present
better visualizations of the concepts. In that case, the direc-
tions of the columns of the mixing matrix can be identified
with only a single angle, thus it is a one-dimensional ran-
dom variable.

The Parzen window density estimation for the angle given
the samples and a kernel function ��(�) is given by

p(�) =
1

N

NX
i=1

��(� � �i); (2)

where the samples of the angle are evaluated, using the nonzero
measurement vectors, from

�i = arctan
x2

x1
:

The zero measurements are simply omitted, as they have
no well-defined angle. Once this density estimation is ob-
tained, standard optimization methods to find the angles
corresponding to the peaks of the density function can be
employed. In this study, we utilize the steepest ascent al-
gorithm to achieve this objective. There are two cases of
interest that require different approaches when the steepest
ascent is to be used in this problem. These are the static
case, where the mixing matrix is constant at all times, and
the dynamic case, where the mixing matrix is time vary-
ing, but the mixture is still instantaneous. In the following

sections, we will provide algorithms to achieve optimal so-
lutions for both cases.

3. STATIC CASE

In the static case, the mixing matrix is assumed to be con-
stant; therefore, all the measurement samples can be used
in the density estimation for the angle in a batch-learning
scheme. Since we are looking for the largest three peaks
(due to three sources) of the estimated density, and we are
going to use steepest ascent, our initial estimates must be
in the domain of attraction of those solutions that we seek.
For this, the direction estimates obtained from the histogram
method are used as initial conditions to the steepest ascent
algorithm. For example, by using 180 bins in the interval
[0; �] we can obtain initial estimates that are closer than one
degree to the solutions. Note that it is sufficient to con-
sider the angles in this interval only, since a sign ambiguity
is acceptable in BSS. Furthermore, we can assume that the
columns of A are unit length, since this corresponds to an
ambiguity in the scaling factor, which is also acceptable in
BSS.

Once the initial estimates are obtained from the histogram
method, the following gradient expression of the ’cost func-
tion’ in (2) is used to refine the estimates until convergence
to the maximum is achieved

r�p(�) =
1

N

NX
i=1

r��(� � �i):

This procedure is repeated for the three initial conditions
provided by the histogram. Since Parzen windowing pro-
vides a continuous estimate of the density function of inter-
est, in theory it is possible to achieve a very high resolution,
provided that the kernel size is chosen sufficiently small so
that there are no artifact peaks; whereas in the histogram, in
order to increase resolution, more bins are necessary.

The choice of the kernel size in Parzen windowing is
crucial to an accurate estimation of the correct directions of
the columns. In figure 2, the MSE in the estimation of the
actual directions (in radians squared) versus the kernel size
for Gaussian kernels is shown for sparsity factors of 0.2, 0.5,
and 0.8. We have defined the MSE as

1

M

MX
m=1

3X
j=1

1

3
(�j � �̂j)

2;

where M is the number of simulations used in the Monte-
carlo method. It is clear from this plot that, given a step size
for steepest ascent, there exists an optimal kernel size for
each sparsity factor. However, since there is no reference to
compare estimates in practice, it is safer to use a large ker-
nel size as the estimation MSE does not increase as fast as
it does when a smaller kernel size is used.
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Fig. 2. MSE in angle estimation vs kernel size for different
sparsity factors.

It is also of theoretical interest to investigate the behav-
ior of MSE of estimation as a function of the sparsity rate.
One would expect to observe an increasing performance
in estimation as the sparsity increases, since there will be
more and more samples that are perfectly aligned with the
columns compared to the outliers that are generated as a re-
sult of more than one active source.
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Fig. 3. MSE in angle estimation vs sparsity factor for Parzen
window (using optimal kernel size) and histogram.

Figure 3 shows that, just as expected, when the sparsity
rate increases the MSE decreases. Another very important
conclusion drawn from this plot is that refining the estimates
with the Parzen windowing method remarkably improves
upon the initial estimates given by the histogram. Note that,

since a steepest ascent algorithm with a fixed step size is uti-
lized in training, the actual maxima are not exactly obtained.
A portion of the MSE in the Parzen window method is thus
due to this slight misadjustment from the optimal values. In
contrast, a greater portion of the MSE in the histogram es-
timates is due to the finite bin length. Assuming a uniform
distribution in each bin of length one degree, the associated
variance would be on the order of 10�5 rad2 . We observe
that the results in figure 3 are in conformity with this expec-
tation.

4. DYNAMIC CASE

In the dynamic case, we assume that the mixing matrix is
time varying, although the mixing procedure is still linear
and instantaneous. This situation may occur, for example,
when there are fixed microphones in a room and the speak-
ers are moving around, so that the attenuation experienced
by the speech signal until it reaches the microphone varies
with time. Assuming no echo and reverberation in the envi-
ronment, and also assuming that the speech from a speaker
arrives at all microphones at the same instant, this time-
varying instantaneous mixture model is sufficient.

In order to track the columns of a changing matrix, the
training algorithm presented in the static case must be mod-
ified slightly. Since the algorithm will try to track the direc-
tions of the columns blindly, a sufficiently accurate initial
estimate is crucial. The static Parzen windowing method
can be used to achieve this initialization assuming that the
columns are rotating ’slowly’. In order to initialize the an-
gle estimations, a number of samples must be collected first.
If the time variation of the columns is slow, then when the
static training algorithm is applied to this data set, one ob-
tains a sufficiently accurate initial estimate of the angles.
The number of samples required for this initialization pro-
cedure can be in the order of hundreds or smaller. Once the
initialization is achieved, a modified version of the steep-
est ascent algorithm will be applied to adapt the angle esti-
mates on-line on a sample-by-sample basis. As the adapta-
tion criterion, there exist alternatives. One of them is to use
a fixed-length window of samples extending back in time
and use these samples to update the density estimate with
every new sample. Then, the solutions that maximize the
estimated density can be obtained using steepest ascent. A
second approach, the one we will adopt, is to use a forget-
ting factor approach and to estimate the new density using a
linear combination of the estimate from the previous sample
and the kernel evaluated at the current sample. In this case,
the cost function, i.e. the density estimate, at time instant k
reads as

pk(�) = �pk�1(�) + (1� �)��(� � �k);

where � is the forgetting factor. This formulation of the



density estimation also gives rise to a recursive algorithm
for the evaluation of the gradient. The gradient expression
to be used in the update at time instant k, in terms of the
gradient from the previous samples and the kernel function,
now becomes

rk
�p = �rk�1

� p+ (1� �)r��(� � �k);

and is evaluated at the current estimate of the angle �. In
the update phase, only one of the three angles is updated,
and that is determined by comparing the difference between
the angle of the current sample and the estimates of the an-
gles from the previous update. The distance is measured in
mod-� arithmetic since the directions of the columns have
a periodicity of � radians.

A number of simulations have been carried on to evalu-
ate the performance of this tracking algorithm. It has been
determined that the tracking ability of the algorithm is lim-
ited by the first and second derivatives of the angles of the
columns with respect to time. Using the values 0:9 for the
forgetting factor, 3 � 10�3 rad for the size of the Gaussian
kernel (this is approximately the value obtained for the op-
timal kernel size as given in figure 2), and a step size of
10�7, the algorithm was able to track signals with first or-
der derivatives on the order of 10�5 rad/sample. Figure 4
presents an example of such a simulation. In this exam-
ple, the directions of the three columns of the mixing matrix
are varying in time as sinusoids of various amplitudes and
frequencies, adjusted such that their maximum time deriva-
tives do not exceed the determined upper limit. The initial
estimates were computed using the batch training algorithm
on one hundred samples also collected from the same time-
varying mixing matrix.
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Fig. 4. Tracking of the angles that define the columns of the
mixing matrix.

The question at this point is, how good this tracking al-

gorithm in tracking changing mixing matrices in a typical
environment is. For example, will it be able to track the
changing mixing matrix when a speaker walks around in
the room? In order to investigate the answer to these ques-
tions, we use a simple spherical sound wave propagation
model. Assume that the source signal generated by a point
source propagates radially at all directions and the power
(intensity) of the signal decreases proportional to the dis-
tance squared. In that case the instantaneous power received
at sensor i due to the source signal j is written as

x2i (t) =
�2

d2ij
s2j (t);

where sj is the jth source signal amplitude, dij is the dis-
tance from sensor i to source j, and � is a coefficient de-
pending on all other environmental factors. Then, in order
to be consistent with this power attenuation model, the am-
plitude of the received signal at sensor i has to be

xi(t) =
�

dij
sj(t)

Thus the entry aij of the mixing matrix can be determined
from this equation to be

aij =
�

dij
: (3)

The distance-squared from source j to sensor i is

d2ij = (sj � xi)
T (sj � xi); (4)

and the velocity of source j is

_sj = vj : (5)

Combining (5) and (4) we get

_dij = (sj � xi)
T vj

dij
:

Combining this with (3) we obtain

_aij = ��(sj � xi)
T vj

d3ij
: (6)

Since the angle of the jth column of the mixing matrix is
written as

�j = arctan
a2j

a1j
;

taking the time derivative we have

_�j =
_a2ja1j � _a1ja2j

a2
1j + a2

2j

;

and finally combining this with (6) and (3), the following
relation between the change of directions of the columns of
A and the physical environment is obtained

_�j =
d1jd2j

d2
1j + d2

2j

"
sj � x1

d2
1j

�
sj � x2

d2
2j

#T
vj : (7)



The upper bound for the absolute value of (7) corresponds to
the case where the source is aligned with the measurement
points and the velocity vector is collinear with them

j _�j j �
2dx

4d2j + d2x
jjvj jj � Umax(dx; dj)jjvj jj;

where dx is the distance between sensors, and dj is the
distance from the midpoint between sensors to source j.
Therefore, the worst case upper bound for the velocity of
the sources is given by

jjvj jj �
j _�maxjfs

Umax(dx; dj)

rad/sample � samples/sec
rad/m

:

We know that, with the chosen parameters, the algorithm
can track time variations of 10�5 rad/sample. Suppose a
sampling frequency of 10 KHz is used. Then figure 5 shows
the worst case upper bound on the speed of the speaker as a
function of distance to microphones for different values of
microphone separation.
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Fig. 5. Worst case upper bound on the velocity of the
speaker as a function of distance to microphones for dif-
ferent values of separation between microphones.

For instance, if the speaker is four meters away from
the microphones, and the microphones are placed one meter
apart, according to the above formula, the worst case upper
bound for his speed would be 3:25 m/sec, as is illustrated in
figure 5 with a star.

Even though, in our analyses we have considered the un-
derdetermined case with two-measurements, for the sake of
simplicity, the presented methodology and algorithms can
be easily generalized to cases with higher dimensionality
and to squared and overdetermined cases.

5. CONCLUSIONS

In this communication, we have studied the problem of es-
timating the mixing matrix in the context of instantaneous
blind source separation. The approach followed involved
determining the peaks of the conditional probability den-
sity of the measurement directions given the samples. It has
been shown that, even for low sparsity factors, these peaks
correspond well to the true directions of the columns of the
mixing matrix. The conditional distribution is estimated us-
ing Parzen windowing, and the peaks of the histogram are
used as initial estimates for determining the peaks of this
estimated conditional distribution. This approach is shown
to greatly refine the estimation of the columns of the mixing
matrix.

Next, the algorithm had been modified to deal with the
tracking of the columns in the dynamic case where the mix-
ing matrix is assumed to be time varying. An upper bound
on the tracking ability of the algorithm has been determined,
and using a simplified wave propagation model, this value
had been used to estimate the maximum allowable speed
for mobile sources as a function of sensor separation and
distance to sources.
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