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ABSTRACT 
 
We have recently reported on the use of minimum error 
entropy criterion as an alternative to minimum square error 
(MSE) in supervised adaptive system training. A 
nonparametric estimator for Renyi’s entropy was 
formulated by employing Parzen windowing. This 
formulation revealed interesting insights about the process 
of information theoretical learning, namely information 
potential and information forces.  Variants of this criterion 
were applied to the training of linear and nonlinear 
adaptive topologies in blind source separation, channel 
equalization, and chaotic time-series prediction with 
superior results. In this paper, we propose an on-line 
version of the error entropy minimization algorithm, which 
can be used to train linear or nonlinear topologies in a 
supervised fashion.  The algorithms used for blind source 
separation and deconvolution can be modified in a similar 
fashion.  For the sake of simplicity, we present preliminary 
experimental results for FIR filter adaptation using this on-
line algorithm and compare the performance with LMS.    
 
 

1. INTRODUCTION 
 

Mean square error (MSE) has been the focus of optimal 
filtering and function approximation research since Wiener 
and Kolmogorov established the perspective of regarding 
adaptive filters as statistical function approximators [1].  
When applied to the FIR filter training, an analytical 
solution to MSE is given by the Wiener-Hopf equation [2].  
In many real-time applications, however, this solution was 
not practical, hence simple variants of the steepest descent 
algorithm emerged, LMS by Widrow being the most 
popular [3].  In contrast, we, among others [4] have 
proposed the use of error entropy minimization as the 
performance criterion in adaptation, since manipulation of 
information is better suited to adaptation rather than 
merely second order statistics. 

 
Originally, the error entropy minimization algorithm we 
proposed relied on the use of quadratic Renyi’s entropy 
and the Gaussian kernels in Parzen windowing due to 
analytical simplicities [5].  Recently, we have formulated a 
new nonparametric entropy estimator, again with the use 
of Parzen windowing, which made possible the use of any 
order of entropy and any suitable kernel function [6].  We 
have also proved that minimizing the error entropy is 
equivalent to minimizing the divergence, as defined by 
Amari in [7], between the output probability density 
function (pdf) and the desired signal’s pdf [8].  In addition, 
the generalized estimator reduced to the previously utilized 
estimator for quadratic entropy, for the specific choices of 
entropy order α=2, and Gaussian kernels [6].  With this 
generalized estimator, it also became possible to 
generalize the concepts of information potential and 
information force, to any order α, which were previously 
defined in the context of blind source separation for the 
quadratic case [9].   
 
Batch version of the steepest descent algorithm was the 
basis of our work in minimizing Renyi’s entropy.  This 
contrasts with the formulation of InfoMax [10] and 
FastICA [11], which lead to on-line algorithms that are 
practical in real-time applications.  However, batch 
learning brought the ability to conduct theoretic work on 
the adaptation propert ies of the algorithm.  We have 
recently analyzed the structure of the performance surface 
in the neighborhood of the optimal solution.  We have 
derived the difference equations, which govern the 
dynamics of the weights for an FIR filter.  This analysis 
also led to a theoretical upper bound for the step size for 
stability, as well as an understanding of the effect of the 
two free parameters α and σ on this structure and the 
dynamics [12].   
 
In this paper, we propose an approximation to the cost 
function that yields a stochastic instantaneous estimation 



for the gradient.  This stochastic gradient can be used both 
for linear and nonlinear topologies, leading to what we like 
to call information filtering..   
 
The organization of this paper is as follows.  First, we 
present a brief overview of the generalized information 
potential criterion for batch adaptation. Next, we derive 
the instantaneous gradient estimator for information 
potential and define the stochastic information gradient 
algorithm. In Section 4, we analyze the convergence of the 
stochastic information gradient algorithm.  Section 5 
investigates the connection between the stochastic 
information gradient and LMS motivated by the previously 
established link between information potential and MSE.  
Finally, we present two FIR training examples and 
conclusions in Sections 6 and 7. 

 
 

2. ENTROPY CRITERION  
 

Consider the supervised training scheme depicted in Fig. 
1.  We have previously showed that minimizing Renyi’s 
entropy of the error results in minimization of the α-
divergence of Amari [7] between the joint pdfs of the 
input-desired and input-output signal pairs [8].  In the 
special case of Shannon’s entropy, this is equivalent to 
minimizing the Kullback-Leibler divergence.  From a 
statistical function approximation point of view, this is 
exactly what we seek for estimating the unknown system 
parameters. 
   
 
 
 
 

 
 
 

 
Figure 1. Supervised adaptive system training 

 
Renyi’s entropy for a random variable e is defined as [13] 
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where α>0 is the order of entropy.  In the limit, Renyi’s 
entropy approaches Shannon’s entropy as α→1.  
Employing L’Hopital’s rule easily proves this.  In [6], we 
defined the argument of the log to be the (order-α) 
information potential.  Writing the information potential as 
an expected value, we get  
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and then substituting the Parzen window estimation for the 
pdf [14], we obtain the nonparametric estimator of 
information potential 
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Here, σκ  is the kernel function in Parzen windowing with 

σ denoting the width of the window.  In terms of a unit-
width kernel κ , the σ-wide kernel is written as  
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The information potential is a crucial quantity because 
making use of the fact that the log is a monotonic function, 
we can reduce the minimization of Renyi’s entropy to the 
maximization of the information potential for α>1.  
Therefore, the information potential can replace the 
entropy criterion in adaptation with computational savings.   
 
We have investigated the mathematical properties of this 
information potential criterion.  One of the most 
significant properties is its relationship with the 
convolution smoothing method in global optimization.  
We have demonstrated that this cost function, in the limit 
as the number of samples go to infinity, approaches to a 
convolution smoothed version of the actual information 
potential, thus eliminating all local optima [6].  Together 
with the dilation property of this cost function in the 
weight space for a large kernel size, this link motivated a 
new approach to steepest descent adaptation.  We have 
proposed the use of a variable kernel size, starting from a 
large value and decreasing to a preset small value.  This 
way, it is possible to avoid any local minima in the entropy 
and achieve global optimization even when steepest 
descent is utilized [6]. Another interesting equivalence 
materializes when the first order Taylor approximation to 
the kernel function satisfies specific conditions and the 
kernel size is very large.   In this case, as we have shown, 
the information potential criterion reduces to the MSE 
criterion, thus MSE is a limit case of our error entropy [6].  
One final remark we would like to make at this point is 
that, after extensive simulations we have not observed any 
local minima for the entropy in FIR filter training, thus we 
conjecture, based upon this observation that the 
information potential given in (3) has a unique maximum, 
which in turn is the global optimum solution. 
 
 

3. STOCHASTIC GRADIENT 
 
Suppose the adaptive system under consideration in Fig. 1 
is a linear (e.g. FIR) or nonlinear (e.g. TDNN) topology 
with a weight vector w .  The error samples can be 
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represented by kkk yde −= .  Then the gradient of the 

information potential estimator given in (3) with respect to 
the weight vector is simply  
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The obvious approach to obtain a stochastic gradient 
would be to drop the expected value operator in the 
information potential expression in (2), which would 
eliminate in (5) the summation over the index j, and use a 
window of samples for i, extending back in time to 
estimate the pdf and hence the gradient associated with 
this stochastic version of the criterion.   
 
Since all data are considered in pairs in the adopted 
formulation of the entropy, it is convenient to regard the 
training data set for this problem, which consists of N 
input-desired output pairs of the form 
{ }),(),...,,( 11 NN dxdx , in an alternative indexation.  

This results in a new training data set in the form 

{ }
Njiijij dx
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We can define new variables for the error samples and the 
gradients of the output with respect to the weights for 
different input vectors similarly, where the double-index 
denotes subtraction in the appropriate order.  With this 
new notation, our gradient expression in (5) simplifies to 
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where the summation over ji is performed over the index 
of the new training set.  When writing (7), we defined 
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This new formulation of the gradient in terms of the 
samples in an alternative expression of the training set 
allows us to see clearly now how to obtain a stochastic 
gradient estimate for the information potential using the 
most recent sample only.  The stochastic gradient at step k 
obtained by this approximation, considering only the most 
recent sample for k and a window of samples extending 
back in time from k for i, is now written as 
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where N is the window length.  Notice that in (9), the term 
corresponding to i=0 is zero.  The expected value of this 
stochastic gradient expression is equal to the actual 
gradient in (5), as will be proven in the next section. 
 
We can further simplify the stochastic gradient expression.  
As far as the new training data set, which consists of 
differences of pairs, is concerned, the most recent time 
index is (k,k-1).  As in LMS, we now consider this 
instantaneous gradient as a stochastic estimation to the 
actual gradient in (8), and write the instantaneous gradient 
at time instant k as follows. 
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Notice that this stochastic information gradient (SIG) 
expression corresponds to the drastic choice of N=2 in (9).  
Now, using this instantaneous gradient estimator, we can 
maximize the information potential using a steepest ascent 
algorithm with the following update. 
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The evaluation of this instantaneous gradient given in (10) 
requires a single kernel evaluation (no summation) for 

),( σαkC  at 11, −− −= kkkk eee  if 2≠α , and a single 

evaluation of the derivative of the kernel function at the 

same point 1, −kke .  If the kernel function is chosen to be a 

Gaussian, its derivative is simply a product of its argument 
and the Gaussian evaluated at the same point again, hence 
one needs only a single kernel evaluation to compute both 

),( σαkC  and σκ ′  terms.   

 
For FIR filter adaptation, further simplification is possible.  
In this case, the gradient of the output with respect to the 
weight vector is simply the input vector, thus we substitute 
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In this section, we have derived an instantaneous gradient 
estimator for the information potential following a 
methodology similar to the LMS algorithm. Only this time 
we have used a modified training data set that consists of 
pair-wise differences of the samples in contrast to using 
the actual input-output pairs as done in LMS.  Hence, this 
viewpoint involving an alternative training data set 
enabled us to discover the similarities between our 
stochastic information gradient algorithm and LMS, as 



well as it clarifies the differences.  We have observed that 
the stochastic information gradient is similar to Widrow’s 
instantaneous gradient estimator in LMS in structure when 
we introduce the modified training set, except for the 
scaling factors that depend on the kernel evaluation and 
the entropy order.  These extra scale factors, however, will 
lead to a smoother convergence both in terms of the cost 
function and the weight trajectories as we will see later. 
 
Obviously, when the drastically reduced SIG given in (10) 
is used in adaptation, the weight tracks will be noisy.  One 
way to get a smoother convergence of the weights is to use 
an average of the stochastic gradient in (10) over a 
window of samp les and update once at the end of every 
window by this average gradient.  This is given by 
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Note that this is different from the gradient expression 
suggested in (9) as the averaging is done over the gradients 
of a window of consecutive sample pairs, whereas in (9), 
the gradient is evaluated over pairs of samples formed by 
the instantaneous sample and a window of samples that 
preceded it. 
 
 

4. CONVERGENCE IN THE MEAN FOR 
FIR FILTERS TRAINED WITH SIG 

 
One compelling property of LMS is its convergence in the 
mean to the Wiener-Hopf solution.  This property is 
mathematically stated as 
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Here, *w  is the optimal MSE solution.  In addition to this, 
it is also known and easy to prove that for a quadratic cost 
surface, the expected value of Widrow’s instantaneous 
gradient is equal to the actual gradient vector [2].  This 
fact will become useful also in proving the convergence in 
the mean for the stochastic information gradient later. 
 
Now, consider the exact information gradient given in (5) 
and the stochastic gradient given in (6) or (10).  We will 
denote the former by )( kwV∇  and the latter by )( kwG  
evaluated at a given weight vector 

kw .  Since the 

stochastic gradient is derived as an approximation to the 
exact gradient simply by dropping out terms in the 
summation, we can write  
 

)()()( kkk wHwGwV +=∇       (15) 
 

where )( kwH  contains all the left over terms.  The 

weight updates are done using the stochastic gradient as 
given in (11).  Substituting (15), 
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We have mentioned that the expected value of Widrow’s 
stochastic gradient estimator for MSE is equal to the actual 
gradient.  This is due to the quadratic nature of the 
performance surface with respect to the weights.  We have 
shown in [12] that the information potential becomes 
quadratic in the vicinity of the optimal solution.  
Furthermore, we proved that, we are able to control the 
volume of the region, where the performance surface is 
approximately quadratic, simply by adjusting the size of 
the kernel function used in the Parzen window estimator 
[6].  Combining this fact and the fact that the weights will 
converge to the vicinity of *w  as the number of iterations 
increases, due to the existence of a single maximum, we 
conclude that in the limit the expected value of the 
stochastic information gradient is equal to the exact 
information gradient. 
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Employing the identity given in (15), we have 
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Consequently, the update equation given in (16) reduces to 
the steepest ascent algorithm in the mean, that is  
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In the limit, the two expected values in (19) converge to 
the same value hence the exact gradient of the information 
potential converges to zero.  Thus the weight vector 
converges to the optimal solution, *w . 
 
 

5. RELATIONSHIP OF SIG WITH LMS 
 
In [6], we have shown that for the quadratic entropy, if the 
kernel function satisfies certain conditions, the 
minimization of error entropy approaches to minimizing 
MSE in the limit when the kernel size is increased. This 
equivalence in the limit encourages us to investigate any 
possible connection between the SIG and LMS.  Consider 
the instantaneous gradient estimator for information 
potential given in (10).  When the kernel size is very large 
(or when the weights are very close to the optimal solution 
such that the entropy of the error is small), we can 



approximate the kernel’s derivative around zero by a line 
(with negative slope).  Also, choosing 2=α eliminates the 
coefficient ),( σαkC  due to the power )2( −α . 
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where the coefficient c  gets smaller with increasing 
kernel size.  Clearly seen from (20), for the choice of 
quadratic entropy and Gaussian kernels, SIG is nothing 
more than the LMS applied to the instantaneous 
increments of the error and the input vector. 
 
 

6. SIMULATIONS 
 
In order to demonstrate the SIG algorithm at work, we 
present two simulation results in this section, both using 
the quadratic entropy and the gradient given in (10).  The 
first example considered here is a time-series prediction 
problem.  The time-series to be predicted is a sum of three 
sinusoids given by 
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sampled at 100Hz.  The training sample consists of 32 
samples, which corresponds to approximately one period 
of the signal.  In this example, we use different step sizes 
for SIG (0.1) and LMS (0.001).  These choices guarantee 
that the convergence of both algorithms occurs at around 
150 epochs.  The results for this case are presented in Fig. 
2.  Notice that, since we have decreased the step size of 
LMS, the weight trajectories are now much smoother, but 
still slightly jagged compared to those of the SIG.  
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Figure 2. Weight Tracks for SIG (solid) and LMS (dotted) 
on the Contour Plot of the Information Potential Function 
– Sinusoidal Signal Prediction 
 
For the fixed convergence time, SIG is observed to 
converge smoother than LMS.  The reason for this is, the 
information potential relies on pair-wise differences of the 

error samples and in addition, the variance of these 
differences are made even smaller since they are passed 
through the kernel function.  This constriction acts like a 
lowpass filter on the gradient vector and prevents the 
gradient vectors of consecutive iterations from fluctuating 
drastically.  It also enables SIG to use larger learning rates, 
values at which LMS would become unstable.  For 
example, LMS would become unstable in this problem if it 
used the step size assumed by SIG.  In general, one would 
start with a very small step size to be on the safe side, but 
this will reduce the convergence speed.  Clearly, using the 
stochastic gradient avoids this problem of determining a 
suitable step size, because the upper limit on the step size 
for stability of the algorithm is higher compared to LMS. 
 
The second example is the frequency doubling problem, 
where a 2-tap FIR filter is trained to double the frequency 
of the sinusoid presented at its input.  The motivation for 
this example is to investigate the behavior of the SIG 
algorithm and the shape of the entropy as a cost function in 
a case where we know the optimal solution has large 
approximation errors.  Clearly, the performance of a 2-tap 
FIR filter will be limited in this problem.  Shown in Fig. 3 
below, there is a unique maximum and two local minima. 
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Figure 3. Weight Tracks for SIG (solid) and LMS (dotted) 
on the Contour Plot of the Information Potential Function 
– Frequency Doubling 
 
Since it is time consuming to evaluate the information 
potential on a grid in the weight space for a large number 
of training samples, we have restricted the number of 
training samples to 20 and performed the weight updates 
for both the SIG and LMS over the data 1000 epochs to be 
consistent with the contour plots.  However, the algorithm 
works perfectly well using only a single pass over a larger 
training set.  The kernel size used to obtain this contour 
plot is a relatively small value (σ=0.2).  When a larger 
kernel size is utilized, the area of the region where the 
quadratic approximation is accurate increases, as expected.  



Notice that the contours of the information potential for 
weight vectors that are far from the optimal solution have 
changed shape compared to the previous example; 
however, near *w  both performance surfaces are 
accurately represented by a quadratic function.   
 
 

7. CONCLUSIONS 
 
We have recently proposed the minimization of Renyi’s 
error entropy as an alternative adaptation criterion, to 
perform information theoretical learning.  Initially, we 
have employed Renyi’s quadratic entropy, due to 
analytical complexities involved with other orders of 
entropy. as the criterion with success in blind source 
separation, equalization, and chaotic time-series 
prediction.  Motivated by good results, we sought for 
extensions to any order of Renyi’s entropy.  The extended  
α-order nonparametric estimator reduced to the previously 
used estimator for quadratic entropy, and performed 
equally well in the same problems for various orders of 
entropy.  In fact, we believe there is an optimal choice of 
the entropy order and the kernel function for each specific 
adaptation problem, however, at this time it is not clear 
how to achieve this and we pose it as an open question.   
 
One drawback of the entropy algorithms was that they had 
to work in batch mode.  With the work presented in this 
paper, we overcame this shortcoming and proposed a 
successful on-line version through an approximation of the 
gradient vector, which we named the stochastic 
information gradient (SIG).  We have proved that SIG 
converges to the optimal solution of the actual entropy 
minimization problem in the mean.  We have investigated 
the relationship between the LMS and the stochastic 
information gradient in the limiting case of a large kernel 
size, and found out that the latter incorporates some 
momentum terms into the update algorithm compared to 
that of LMS.  Also presented here were two comparative 
examples of FIR training, where the advantages of SIG 
over the classical LMS have been demonstrated. 
 
Although not reported here, we have successfully applied 
the stochastic information gradient to blind source 
separation, blind deconvolution, and projection pursuit 
problems.  Those results will be presented elsewhere. 
 
Further studies must be conducted on the properties of 
entropy minimization criterion and the convergence 
properties of the stochastic information gradient algorithm 
to set up a solid information-theoretic learning theory, 
similar to that behind MSE criterion and the LMS 
algorithm.  Items of primary interest are the counterparts 
of the misadjustment and excess MSE.  In addition, a 

rigorous proof of the non-existence of local optimum 
solutions will be useful.  
 
Acknowledgments:  This work was supported by the NSF 
grant ECS-9900394. 
 
 

REFERENCES 
 
[1] Wiener N., Extrapolation, Interpolation, and 

Smoothing of Stationary Time Series with Engineering 
Applications, MIT Press, Cambridge, MA, 1949. 

[2] Haykin, S., Adaptive Filter Theory,  3rd ed., Prentice 
Hall, Inc., NJ, 1996.  

[3] Widrow, B., S.D.Stearns, Adaptive Signal Processing, 
Prentice Hall, NJ, 1985. 

[4] Casals, J.S., Jutten, C., Taeb, A., “Source Separation 
Techniques Applied to Linear Prediction,” in 
Proceedings of Independent Component Analysis 
2000, pp.193-198, Helsinki, Finland, June 2000. 

[5] Erdogmus D., J.C.Principe, “Comparison of Entropy 
and Mean Square Error Criteria in Adaptive System 
Training Using Higher Order Statistics”, in 
Proceedings of Independent Component Analysis 
2000, pp. 75-80, Helsinki, Finland, June 2000. 

[6] Erdogmus, D., J.C.Principe, “Generalized Information 
Potential Criterion for Adaptive System Training,” 
submitted to IEEE Transactions on Neural Networks, 
Feb. 2001.  

[7] Amari, S., Differential–Geometrical Methods in 
Statistics, Springer-Verlag, Berlin, 1985. 

[8] Erdogmus, D., J.C.Principe, “An Entropy 
Minimization Algorithm for Short-Term Prediction of 
Chaotic Time Series,” submitted to IEEE Transactions 
on Signal Processing, Sept. 2000. 

[9] Principe, J.C., D.Xu, J.Fisher, Information Theoretic 
Learning, in Unsupervised Adaptive Filtering, vol I, 
Simon Haykin Editor, 265-319, Wiley, 2000. 

[10] Bell, A., Sejnowski, T., “An Information-
Maximization Approach to Blind Separation and 
Blind Deconvolution,” Neural Computation, vol. 7, 
pp. 1129-1159, 1995. 

[11]Hyvarinen, A., “Fast and robust fixed-point algorithms 
for independent component analysis,” IEEE 
Transactions on Neural Networks, vol. 10, pp. 626-
634, 1999. 

[12] Erdogmus, D., J.C.Principe, “Convergence Analysis 
of the Information Potential Criterion in ADALINE 
Training,”, accepted to Neural Networks in Signal 
Processing 2001, Falmouth, Massachusetts, USA, Dec 
2001. 

[13] Renyi, A., Probability Theory, American Elsevier 
Publishing Company Inc., New York, 1970. 

[14] Parzen, E., “On Estimation of a Probability Density 
Function and Mode”, in Time Series Analysis Papers, 
Holden-Day, Inc., CA, 1967. 


