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ABSTRACT 
 
We have previously proposed the use of quadratic Renyi’s mutual information, estimated using Parzen windowing, 
as an ICA criterion and showed that it utilizes data more efficiently than classical algorithms like InfoMax and 
FastICA.  We suggested the use of Renyi’s definition of information theoretic quantities rather than Shannon’s 
definitions since the Shannon’s definitions are already included in Renyi’s as special cases.  In the estimation of 
probability densities using kernel methods, the choice of the kernel width is an important issue that affects the 
overall performance of the system, and there is no known way of determining the optimal value. Legendre 
polynomial expansion of a probability distribution, on the other hand, has two advantages. Hardware 
implementation is trivial and it does not require the choice of any parameter except for the point of truncation of the 
series. The rule for this assignment is simple: the longer the series, the more accurate the density estimation 
becomes.  Thus, we combine these two schemes, namely Renyi’s entropy and Legendre polynomial expansion for 
probability density function estimation to obtain a simple ICA algorithm. This algorithm is then tested on blind 
source separation, time-series analysis, and data reduction. 
 
 
I. INTRODUCTION 
 

Independent components analysis (ICA) has become 
one of the crucial topics of research in signal processing 
recently.  The classical InfoMax algorithm by Bell and 
Sejnowski [1] and the FastICA algorithm by Hyvarinen 
[2] are only two of the important achievements in this 
field.  However, in our previous studies, we showed that 
our ICA criterion, involving Renyi’s mutual 
information, uses data more efficiently than both of 
these classical algorithms [3].  The probability density 
function (pdf) estimator we used was Parzen 
windowing, which required an assignment of the kernel 
width.  There is no mathematically rigorous method of 
assigning kernel widths optimally for kernel methods; 
therefore, we were inclined to find a pdf estimator that 
did not require such parameter assignment tasks.  
Polynomial methods are suitable for this purpose.  
Comon and others used truncated polynomial 
expansions for pdf estimations [4-6], and typically 
Edgeworth or Gram-Charlier expansions were utilized, 
which became intractable and extremely complex even 
for very small orders of truncation.  Legendre 
polynomials, which were used successfully by Friedman 
in the projection pursuit context [7], however, are 
recursive in nature; therefore, the higher order terms in 
the expansion can easily be computed.  This is also an 
important factor when an easy evaluation of the gradient 
of the cost function is necessary.   

In this paper, we propose a new ICA criterion that 
employs Renyi’s entropy definition and Legendre 
polynomial expansion to estimate it.  First, we briefly 
describe the cost function.  Next we derive the gradient 
of the cost function with respect to the weight vector of 
the system.  In the case studies section, we present three 
applications where the algorithm may be used.  These 
include blind source separation (BSS), time-series 
analysis, and data reduction / feature extraction.  
Finally, we finish with the conclusions. 

 
 

II. ICA COST FUNCTION 
 

Mutual information is considered the natural cost 
function for ICA [5,6,8]. Shannon’s definition of mutual 
information is extensively exploited in the ICA and BSS 
literature for that reason.  Alternatively, we propose the 
use of Renyi’s definition of mutual information as the 
criterion, since it already contains Shannon’s definition 
as a special case; hence, it is more general.  Renyi’s 
mutual information of order α between n random 
variables with the joint pdf )(yfY  is given by [9] 
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For Renyi’s definition, the mutual information is not 
identically equal to the sum of Renyi’s marginal 
entropies minus the joint entropy, which is  
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Notice that both (1) and (2) achieve their minimum 
values when the n random variables are independent, 
i.e. when the joint pdf is equal to the product of the 
marginals.  For this reason, we can employ (2) as an 
ICA criterion instead of (1).  Recall that, for Shannon’s 
definitions, i.e. as α→1, the expressions in (1) and (2) 
become identically equal.  If we utilize a two-step 
parameterization that involves spatial whitening 
followed by a rotation, as proposed by Comon [4], we 
can further simplify the cost function.  The proposed 
architecture is shown below in Fig. 1. 

Figure 1. ICA System Block Diagram 
 
Since in this case we will only adapt the angles of the 
Given’s rotation matrix, we can drop off the joint 
entropy from the cost function, because we know that 
Renyi’s joint entropy, like Shannon’s, is invariant under 
rotation [3].  Thus, the cost function becomes  
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In order to evaluate the cost function, we need to 
obtain a nonparametric estimate of the entropy of each 
of the outputs. Renyi’s entropy of order α for a random 
variable yi is defined as [9] 
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To obtain the nonparametric estimator, we approximate 
the expectation by the sample mean, and we substitute 
the Legendre polynomial expansion for the pdf, which 
is given by [7] 
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where the coefficients and the polynomials are given by 
(6) below.  In the nonparametric estimator, the 
coefficients are also evaluated using the sample mean in 
place of the expected value.   
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In solving for the independent components, (3) is 
evaluated by substituting (4)-(6) and minimized with 
respect to the angles of the rotation matrix R which is 
composed of a product of rotations in individual planes. 
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It is important to note that, it is crucial to preserve 
the ordering of the matrix multiplications when 
evaluating the cost function and the gradient in training. 

 
 

III. TRAINING THE SYSTEM WITH 
STEEPEST DESCENT  

 
Steepest descent is a simple and fast converging 

algorithm, which is extensively utilized in adaptive 
systems, although, in general, there is a probability of 
being stuck in a local optimum.  For the proposed cost 
function, however, this does not impose any problems, 
because all optima are global [19], and the cost function 
is a smooth periodic surface in the weight space.  The 
gradient of (3) with respect to the angle mlθ  is given by 
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The coefficients ja  depend on the weights since 
they are estimated from the samples; therefore, in the 
gradient computation this must be taken into account.  
The gradient of the polynomials with respect to the 
angles can be computed by recursive equations that 
arise from the recursion in (6), and the expression that 
relates the output samples to the angles in (7).  Note that 
the output vector y is related to the observation vector z 



 

 

at the output of the spatial whitening by Rzy = .  Thus, 
the oth output channel depends on the oth row of the 
rotation matrix R.   
 
IV. STOCHASTIC APPROXIMATION 

OF MUTUAL INFORMATION AND 
ITS STOCHASTIC GRADIENT 

 
It is rather simple to obtain a stochastic gradient 

algorithm that would implement the ICA procedure 
outlined above on a sample-by-sample basis. For this, 
obvious stochastic version, we just need to follow 
Widrow’s example [10], by dropping all the expectation 
operators and replacing them with the instantaneous 
values of their arguments.  With these simplifications, 
the instantaneous entropy estimator for (4) becomes 
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where the instantaneous estimate of the pdf using 
stochastic coefficients is given by 
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The stochastic gradient then becomes 
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where the gradient of the polynomial with respect to the 
rotation angle can be computed similarly to the batch 
adaptation case given in the previous section. 
 It turns out that this obvious stochastic gradient 
estimator for the ICA cost function in (3) is not as 
robust as Widrow’s LMS is for MSE.  Many 
simulations with BSS examples showed that the 
stochastic gradient could not identify the independent 
speakers unless only one of them was speaking and all 
the other sources were silent (except for ambient noise). 
 
 
V. CASE STUDIES 

 
In this section, we present the results of three 

problems where ICA methods can be applied, and in 
particular, we will apply the algorithm sketched in the 
previous section.   

 
Blind Source Separation 
 In instantaneous BSS, our aim is to recover the 
independent source signals from a vector observed 
signals, which were formed by an instantaneous mixture 

of the sources.  If the number of observations is greater 
than or equal to the number of independent sources, and 
the mixing matrix is invertible, then the solution can be 
found by minimizing the criterion in (3) using the 
gradient given in (8).   
 Results are demonstrated here for a mixture of two 
different sentences by the same female speaker.  The 
observations are obtained by synthetically mixing the 
two sentences with the mixing matrix H.  We want the 
overall matrix RWH to be a permutation of a diagonal 
matrix.  The mixing matrix and the overall matrix after 
training with 500 randomly chosen samples are given 
below.  The Legendre polynomial expansion was 
truncated at the 10th order. 
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 Fig. 2 demonstrates how the deformed signal space 
after the mixing operation is restored by the ICA 
algorithm.  The recovered source signals are almost 
exactly the same as the originals, except for the scaling 
factor introduced in the separation process, which is 
unavoidable. 

 
Figure 2. Sources, Observations and Recovered Signals 

 
 We have applied this algorithm to the separation of 
randomly chosen and randomly mixed sources.  The 
separation results for various choices of truncation order 
(as low as 5) and number of training samples (as low as 
50) showed that the algorithm successfully recovers the 
independent components in the observation vector. 
 
Time-Series Analysis 
 When training an adaptive FIR filter with the MSE 
criterion, a well-known procedure to eliminate the effect 
of eigenvalue-spread is to first employ principal 
components analysis (PCA) to the input vectors, thus 
obtaining input vectors that have uncorrelated entries.  
Then it becomes possible to adapt the weights of the 
FIR filters with different stepsizes, which are 
determined from the eigenvalues of the auto-correlation 
matrix, hence avoid the slow-convergence problem 



 

 

associated with large eigenspread.  Another possible use 
of this method is to obtain the maximum variance 
preserving components in an input space having higher 
dimension than the length of the filter.  Then the 
dimension of the higher order input space could be 
reduced to be equal to the filter order that is being used, 
thus obtaining a longer memory depth for the FIR filter, 
by keeping only the higher energy components. 
 A similar strategy may be employed, but using 
information theoretical criteria and ICA.  Suppose we 
are going to train an adaptive, length-L FIR filter as a 
single step predictor.  We can use the L most recent 
signal values as the input vector, or we can first 
consider a longer input vector, extending back in time 
even more, and then apply ICA to this longer input 
vector and choose the L independent components that 
possess maximum entropy.  This way, we preserve the 
signal characteristics that have maximum average 
information.  Then we can train the FIR filter to 
minimize the error entropy, where the error signal is the 
difference between the filter output and the desired 
signal.  For more information about error-entropy 
minimization see [11-13].   
 The intuition behind this approach can be 
heuristically stated as follows.  We know that 
minimizing the error entropy maximizes the mutual 
information between the actual filter output and the 
desired output [14].  By choosing the ICA solutions that 
possess the most entropy (though it must be noted that 
some kind of normalization scheme must be employed, 
which we did not do in order to avoid mistaking 
dynamic range with entropy), we try to maximize the 
information transferred through the FIR filter to its 
output, thus helping maximize the mutual information 
between that and the desired output, assuming that there 
exists some type of mechanism (which we wish to 
approximate) that controls the information transfer from 
the input to the desired output.   
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Figure 3. Error entropy vs iterations in FIR training: 
using best two ICA solutions with maximum entropy 

(solid), and two most recent samples in signal (dashed) 
 
 We have applied the ICA algorithm to extract the 
‘most informative 2 components’ from the 3 
dimensional delay vectors formed from the signal.  The 
minimum-error-entropy (MEE) criterion was then 
employed in training the FIR filters with two taps, one 
with the input vectors formed from the ICA solutions, 
and the other with the input vectors formed from the 
signal values themselves.  In numerous experiments, it 
was consistently observed that the filter that was trained 
with the ICA components at the input converged faster 
than the competing filter.  However, it did not 
necessarily achieve smaller error entropy.  The reason 
for this may be the lack of normalization procedures in 
the choice of the components or the use of different 
entropy estimators in ICA and MEE algorithms.  Fig. 3 
shows the convergence of the error entropies for the two 
filters for one such training scenario.  The Legendre 
polynomial expansion is truncated at 10th order. 
 
Data Reduction 
 ICA can also be effectively utilized in feature 
extraction for efficient classifier design.  Torkkola had 
shown that, using a mutual information estimator 
defined by Principe et. al., it is possible to extract 
features that lead to the design of classifiers that 
perform much better than those which are designed 
based on features that are extracted by PCA like 
algorithms, which consider merely the variance in the 
data rather than the information content [15,18].  
Torkkola’s approach was to maximize the mutual 
information between the reduced-dimension data and 
the original data.  Alternatively, we propose the use of 
ICA and again the maximum entropy criterion to select 
the independent components from the feature vectors 
that possess maximum entropy.  Normalization 
procedures to avoid mistaking dynamic range with 
entropy are again crucial in this method. 
 We briefly remark that the intuition lying behind this 
approach depends on Fano’s bound, and the generalized 
bounds that we have recently introduced, which contain 
Fano’s bound as a special case [16,17].  These bounds 
state that increasing the entropy of the input space of the 
classifier can decrease the classification error 
probability, as well as increasing the mutual information 
between the input and the output spaces.  Thus, we wish 
to construct feature vectors of a fixed dimension such 
that the entropy is maximized.  However, to avoid 
duplicating the information in entries of the feature 
vectors, we choose the components such that the mutual 
information between them is minimized. 
 We used the letter recognition data set acquired from 
the UCI Machine Learning Laboratory web page  



 

 

(www.ics.uci.edu/AI/ML/Machine-Learning.html) for 
testing purposes.  As an example, the 6th to 9th features 
of the feature vectors of samples from the letters Z and 
M are input to the ICA algorithm (since the algorithm 
runs in batch mode, it requires more data and much 
more time, O(N2) with respect to the data, to converge; 
therefore, we used a portion of the full feature vector 
which was 16-dimensional).  Once the ICA algorithm 
converged using 100 training samples (50 for each 
letter) and a Legendre polynomial approximation of 
order 10, the two components with the larger entropies 
were chosen.   

 
Figure 4. ICA components plotted for Z (x) and M (o)  

a) Maximum b) Minimum entropy components 
 

Fig. 4 shows the best two and worst two features that 
resulted as the solution of the ICA algorithm.  Clearly, 
the maximum entropy components on the left are more 
helpful in distinguishing between the two classes 
compared with the minimum entropy components on 
the right. 
 
 
VI. CONCLUSIONS 

 
In this paper, we have proposed an alternative 

estimator for an ICA criterion, which had been 
successfully applied previously to blind source 
separation.  This new criterion, based on Renyi’s 
definition of entropy and Legendre polynomials for 
density estimation, was applied to three basic problems 
where the application of ICA methods is promising. 

We have provided the gradient expression for the 
topology/cost-function pair proposed and also 
investigated the possibility of obtaining a stochastic 
gradient estimator that would allow sample-by-sample 
processing of the data to extract independent 
components.  It was found that the obvious stochastic 
gradient inspired by Widrow’s LMS was not 
sufficiently robust. 

The first case example was blind source separation.  
For this example, the algorithm successfully found the 
inverse of the mixing matrix.  Secondly, the algorithm 
was applied to time-series analysis in order to determine 
the most informative independent components of a high 
dimensional delay-line profile of the signal.  The 
reduced dimensional input vectors consisting of the 
most informative components were then utilized to train 
an FIR filter as a single-step predictor.  It was observed 
that the input vectors composed of the more informative 
components resulted in faster convergence, an expected 
effect that is similar to what happens in the PCA-MSE 
case.  Finally, we have employed the ICA algorithm to 
extract the most informative reduced dimensional 
features from a larger dimensional feature vector.  This 
is an important issue in data visualization and classifier 
design when the high dimensionality of the feature 
vector is a problem.  The algorithm was successful in 
identifying the components that would yield less 
classification error. 

When we compared the performances of the 
Legendre polynomial based estimator and the Parzen 
window based estimator for the ICA cost function 
utilized in this paper, we found that the Parzen window 
estimator performed much better; however, we did not 
present any results related to this comparison since it is 
out of the scope of this work, and will be presented 
elsewhere.  This, we believe, results from the pair-wise 
interaction that the kernels in Parzen windowing impose 
on the ‘information particles’ (see [18] for a thorough 
treatment of information particles in the BSS context).  
On the other hand, polynomial methods lack this 
property of pair-wise interaction between training 
samples, thus performing worse. There is one other item 
to keep in mind. Preliminary results indicate that the 
Legendre polynomial expansion requires a higher order 
than the Edgeworth/Gram-Charlier expansions for a 
similar performance level. 

Nevertheless, Legendre polynomials are well-suited 
for hardware implementation since they are evaluated 
recursively from a difference equation. This provides a 
substantial advantage in speed of computation over the 
kernel methods. In addition, the polynomial can be 
expanded to much higher orders than the Edgeworth and 
Gram-Charlier expansions, which become 
computationally infeasible at orders greater than four. 

Future studies may be conducted on comparing the 
estimation accuracies and performances of kernel 
methods, polynomial methods, and other methods in 
entropy evaluation and in problems of interest to the 
ICA field.  We stress that, as long as the estimators 
preserve the location of the extreme points of the ideal 
cost functions, in terms of finding the solution, they are 
equally useful. Hence the question becomes, how does 
the estimator formulation affect the dynamics of 
adaptation and the profile of the performance surface. 
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