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ABSTRACT

Adaptive signal processing theory was born and has lived
by exclusively exploiting the mean square error criterion.
When we think of the goal of least squares without
restrictions of Gaussianity, one has to wonder why an
information theoretic error criterion is not utilized
instead. After all, the goal of adaptive filtering should be
to find the linear projection that best captures the
information in the desired response. In this paper we
summarize our efforts to extend adaptive linear filtering
to information filtering.  We briefly review Renyi’s
entropy definition, Parzen windows and put them
together in a framework to estimate entropy directly from
samples (nonparametric). Once this criterion is developed
we can train linear or nonlinear adaptive networks for
entropy maximization or minimization. We present
results on the properties of the Renyi’s nonparametric
entropy estimator, and show how it performs in chaotic
time series prediction.

1. INTRODUCTION

Starting with the early work of Wiener [1] on optimum
filtering, mean square error (MSE) has been almost
exclusively employed in the training of all adaptive
systems including linear filters and artificial neural
networks.  There were mainly two reasons behind this
choice: Analytical simplicity, and the assumption that
most real-life random phenomena may be expressed
accurately by the Gaussian distribution.  The probability
density function (pdf) of the Gaussian is characterized by
only its first and second order statistics.  Hence, under
these linearity and Gaussianity assumptions, MSE, which
concentrates on second order statistics, would be able to
extract all possible information from a data set whose
statistics are solely defined by its mean and variance.

However, most real-life problems are governed by
nonlinear equations and most random phenomena are far

from being normally distributed. Therefore, for the
training of adaptive systems, a criterion that not only
considers the second order statistics but that also takes
into account higher-order statistical behavior is a
necessity. Moreover, there are classes of problems such
as blind equalization and subspace projection (feature
extraction) for which higher order statistical information
is crucial to obtain useful solutions [2].

The entropy of a given probability distribution function,
introduced by Shannon [3], is a scalar quantity that
provides a measure of the average information contained
in the distribution.  By definition, information is a
function of the pdf itself, hence the entropy should be
estimated directly from the pdf. Application of the
entropy criterion to a system identification framework is
conceptually quite straightforward.  Given a stationary
time series produced by an unknown system, the entropy
of the estimation error ek over the training data set must
be minimized [4].  In fact, when the entropy of the error
is minimized, the expected information contained in the
estimation error is minimized; hence the adaptive system
is trained optimally in the sense that the mutual
information between the time series and the model output
is maximized.

The organization of the paper is as follows.  First, the
backpropagation training algorithms for Renyi’s entropy
with parameter 2 is given for the one-dimensional case.
Second, an analytical proof shows that the global
minimum of the entropy is still a minimum of the Parzen
window estimated entropy when Gaussian kernels are
employed.  Then, results of a case study are presented
where entropy-error minimization criterion is applied to
the short-term prediction of a chaotic time series with a
time-delay neural network (TDNN). The performances of
MSE trained and entropy trained TDNNs are compared in
terms of error power and higher order statistics.



2. TRAINING A TDNN WITH THE
ENTROPY CRITERION

A typical system identification scheme with a time delay
neural network (TDNN) is shown in Fig. 1.  Once the
topology of the network is set, the training criterion is
what determines the overall performance of the final
model.

Figure 1. Block diagram for nonlinear adaptive filtering

If the adaptation criterion is chosen to be the
minimization of the mean square error, and the
optimization procedure is fixed to be steepest descent,
then the originating training algorithm is the well-known
backpropagation algorithm [6].  However, due to the
reasons stated above, if the adaptation criterion is
Shannon’s entropy of the error, the minimization with
steepest descent becomes
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Here, Shannon’s entropy [2] is given by (2)
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In practice, an analytical expression for the stationary
random process pdf, which is necessary for the
computation of Shannon entropy, is not available. Non-
parametric estimators for Shannon entropy are known to
be computationally expensive. We have investigated
more efficient estimators for entropy based on Renyi’s
entropy [7], which reads
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Note that, for 2=α  (quadratic entropy), this expression
becomes
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and for optimization the logarithm can be dropped
yielding
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When the error pdf is approximated from its N samples
by the Parzen window estimator [5] with Gaussian

kernels of zero mean and variance 2σ
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We called V(e) an information potential because it is a
decreasing positive function of the distance between the
samples [2]. Minimizing quadratic entropy is equivalent
to maximizing the information potential. The Gaussian
kernel is preferable because it is continuously
differentiable, and therefore the sum of Gaussians is
continuously differentiable on the space of real vectors of
any dimension.

The gradient vector to be used in the steepest ascent
algorithm for the maximization of the information
potential is found as [2]
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This derivation is easily extended to the multi-variable
case. The sensitivities in (8) are easily computed with the
standard backpropagation algorithm [6]. We will not treat
the case of the adaptive linear combiner since it is a
special case of this formulation (a linear PE in the TDNN
and no hidden layers).

One important point to be mentioned in training with
entropy is that the entropy is invariant to the mean of the
error over the data set. This can be easily shown by a
simple change of variables of the integration, i.e.

eµξζ −= .  Due to this property of entropy, the

algorithm will converge, with a probability of one, to a
set of optimal weights, which do not yield zero error-
mean.  However, this can be corrected by modifying the
bias weight of the output neuron properly to yield zero
mean error over the training data set just after training
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ends.  It must also be noted that the entropy is a cost
function with many local minima.

3. EQUIVALENCE OF LOG-
LIKELIHOOD AND NONPARAMETRIC

ENTROPY TRAINING

It is worthwhile to remember that nonparametric entropy
training is equivalent to maximum likelihood estimation
[10] with the big advantage that we do not require a
parametric family of densities.

Assume that we have a set of i.i.d. random samples xi

distributed as p(xi), and we estimate the differential
entropy as )(ˆ xp using Parzen windows
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where D(.||.) is the Kullback-Leibler divergence.

Now if we apply the asymptotic equipartition theorem
[11], it can be shown that the log-likelihood estimator
applied to the same samples assuming a probabilistic
model with parameter vector θ yields
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i
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As we can see the two methods provide a similar result,
with the difference that we do not require a family of
distributions when using the entropy minimization
approach. Clearly, this is preferable in many real world
problems where we do not know the data distributions.
On the other hand this result also shows that if we assume
a distribution and use information theoretic methods, the
procedure should be called more precisely maximum
likelihood.

4. PROOF OF MINIMA EQUIVALENCE

In an optimization framework, we should further check if
the nonparametric estimator preserves the extreme points
of the theoretical criterion. We proceed to prove that the
global minimum of the entropy is still a minimum of the
non-parametrically estimated entropy for the Renyi’s
entropy, when Parzen windowing with Gaussian kernels
is utilized.
The global minimum of Renyi’s entropy is achieved
when the pdf of error is the Dirac-delta function. Since
entropy is independent of the mean of the error, we can
concentrate on the case where mean of e is zero without
loss of generality.  The gradient of the entropy for
Gaussian kernels is given as
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Evaluating this gradient at [ ] 01 == Neee K , we

obtain a zero value since we are integrating an odd
function.  Hence 0=e  is a stationary point of )(eH Rα .
Now we continue with the computation of the Hessian to
see if it is furthermore a minimum.  The diagonal and off-
diagonal entries of the Hessian are found to be
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The eigenvalues of the Hessian matrix then can be

computed to be 00 =λ  with multiplicity 1 and

)/(1 2σλ Ni =  with multiplicity (N-1), hence the

Hessian is positive semi definite.  The value of the
entropy may decrease in the direction of the eigenvector
that corresponds to the 0 eigenvalue, which is found as
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This means, if the error changes along this direction it
will still have constant entries. However, we have shown
above that, the mean of e  does not change the value of
the entropy.  Therefore, when e  changes along the

direction of 0e
r

, the value of the entropy remains

constant.  So we conclude that Renyi’s entropy
approximated by Parzen windowing with Gaussian
kernels has a minimum at the point where error is
completely constant over the whole data set.

Note that the Hessian matrix for the Renyi’s entropy is
independent of α , and it is identical to the Shannon’s
entropy [12].  Hence, it has the same eigenvalues with the
Hessian matrix of Shannon’s entropy.

5. SHORT TERM PREDICTION OF
CHAOTIC TIME SERIES

When a TDNN is trained with the entropy criterion, the
expected value of the error over the training data set will
not converge to zero.  We have mentioned that, this



problem can easily be solved by adjusting the bias weight
of the last layer to make the mean of estimation error zero
over the training set after the learning finishes.  If the
output PE in the TDNN is chosen to be linear, this
modification is a simple addition of the mean of the
current error to the bias weight of the output PE.

As a case study, the short-term prediction of the Mackey-
Glass chaotic time series [8] with parameter 30=τ
using both MSE trained and (Renyi’s) entropy trained
TDNNs is presented here.  The time-delay TDNN has a
3-tap input, 5 neurons in the hidden layer and a single
linear output neuron.  The embedding dimension is
chosen to be 3 here.  This is less than the embedding
dimension suggested by Taken’s Embedding Theorem,
namely 5, for the Mackey-Glass series [8].  For this size
of the reconstruction space the difficulty level of the
prediction problem increases.  Increased difficulty is
desired since we know that even the MSE criterion
performs quite well for this time series when a 5-tap input
is employed.

The TDNNs are trained over a training data set of length
200 starting from 100 randomly chosen initial weights, so
that hopefully the global optimal solution is one of the
solutions suggested by this Monte Carlo type training
approach.  In this sequence, the weights of the MSE
trained TDNN is iterated 100 times for each initial set of
weights whereas those of the entropy trained TDNN are
iterated for 30 times according to their corresponding
backpropogation algorithms using the conjugate gradient
algorithm [9].  At the end of the mentioned Monte Carlo
training approach, the best set of weights obtained by
each of the criteria are taken and checked for further
improvement by employing a small constant step size.
For this specific case, these extra iterations did not
improve the cost function for either of the criteria.
Finally, the bias weight of the output neuron of both
artificial neural networks are adjusted to give zero error
mean over the training data set after training had finished.

Figure 2: The probability distribution functions for the
estimation errors of MSE and entropy trained TDNNs.

The trained networks are tested on an independently
created test data set of length 10000.  We do not present
the error plots of the two TDNNs over the test data set
here because they do not bear any information when
presented in that form.  Rather, we will concentrate on
the statistical properties of the error signals.  The pdfs of
these two error distributions approximated by a histogram
of equally spaced 100 bins are shown in Fig. 2.  As
observed from this plot, the error distribution of the
entropy trained TDNN is more concentrated around zero
whereas the error distribution of the MSE trained one is
more uniformly distributed over its support.

Figure 3: The autocorrelation functions of the estimation
errors; MSE trained and entropy trained TDNNs
respectively.

Figure 4: The PSD estimates of the estimation errors.

It is observed from Fig. 3 that, the autocorrelation
function of entropy trained TDNN’s error contains higher
frequency components compared to that of the MSE
trained TDNN.  This is also evident from the PSD
estimates of the two random processes (Fig. 4).  The PSD
of the error of entropy trained TDNN decays slower than
that of the MSE trained one in the lower frequencies.

For completeness, we present here the data with its
estimations superimposed (Fig 5).  The extreme values of
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the horizontal axis are chosen to include the point where
the entropy trained TDNN makes its maximum error.

Figure 5: The short-term prediction of Mackey-Glass
time series by MSE and entropy trained TDNNs.

We investigate the central moments of the two error
distributions for a more quantitative comparison.  The
obvious ideal solution should have a Dirac-delta
distributed error.  All central moments of this desired
error distribution are zero.  In other words, we would like
the central moments of the error distribution as close to
zero as possible.  Table 1 lists the first 5 central
distributions of the error for the two training criteria.

n ])[( nMSE
e

MSEeE µ− ])[( nEnt
e

EnteE µ−

1 0 0
2 0.377x10-3 0.285x10-3

3 0.227x10-5 -0.859x10-6

4 0.271x10-6 0.208x10-6

5 0.372x10-8 -0.27 x10-8

Table 1: Central Moments of the error distributions.

Another way of looking at the same problem is to
compare the central moments of the data distribution and
the predicted time series distributions.  What we are
essentially trying to do is to match the probability
distribution of the estimated time series to that of the data
samples.  In other words, we would like the central
moments of the predictions to be as close to those of the
test data set as possible.  The central moments of the test
data set and the predictions by the MSE and entropy
trained TDNNs are given in Table 2.

n ])[( n
xxE µ− ])ˆ[( ˆ

nMSE
x

MSExE µ− ])ˆ[( ˆ
nEnt

x
EntxE µ−

1 0 0 0
2 1.585x10-2 1.248x10-2 1.6x10-2

3 1.085x10-3 0.785x10-3 1.383x10-3

4 6.186x10-4 3.845x10-4 6.838x10-4

5 8.998x10-5 5.125x10-5 12.197x10-5

Table 2: Central Moments of the desired data samples
and the prediction samples.

Note that the even moments of the entropy-trained
predictor are very well matched to the original time
series, while the odd moments are still in error, but above
the true values.  The moments of the MSE trained
predictor always are smaller than the original tending to a
uniform error distribution.

These results point out clearly that, the TDNN
predictions approximate the statistical behavior of the
Mackey-Glass chaotic attractor better when it is trained
with the entropy criterion compared to the MSE criterion.
The pdf estimations of the test data and the TDNN
predictions for these data are presented in the following
figure with a histogram of equally spaced 100 bins.

Figure 6: The histogram of the MG30 and its predictions
by entropy-trained and MSE-trained TDNNs
respectively.

6. OTHER APPLICATIONS OF
INFORMATION THEORETIC CRITERIA

Blind source separation is a problem that can be solved
by exploiting the higher order statistical information of a
set of input signals. Bell and Sejnowski proposed a very
efficient algorithm for BSS that maximizes the entropy at
the output of a nonlinear system [13]. However, their
approach requires knowledge of the kurtosis of the
inputs, and can only be applied to mappers that have full
rank Jacobians.  Alternatively, Renyi’s entropy can be
used to solve the same problem without the above
mentioned limitations. In [14] we compare the
performance of our method with Bell and Sejnowski’s
algorithm and show that our approach is more robust.

We have also extended the entropy criterion to estimate
approximations of mutual information [2]. Manipulation
of mutual information creates a general framework to
train adaptive systems that subsumes supervised and
unsupervised learning (see Fig 7).
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Figure 7. Learning with Information Theoretic Criteria.

When the switch is in position 1 we minimize the mutual
information among the outputs of the mapper (used in
BSS [15]). When the switch is in position 2 we truly
implement Linsker’s Infomax principle. Notice that both
of these belong to the unsupervised learning case. When
the switch is in position 3, we implement information
filtering. When the desired signal is made up of class
lables or continuous variables, and we maximize the
criterion we have feature extraction that preserves the
maximum information in the features. These features can
be used for classification (indicator variable) [16] or
simply sub space mappings (as pose estimation in
imagery [2]).

7. CONCLUSIONS

In this paper, an information theoretical learning criterion
for adaptive systems, namely estimation-error-entropy-
minimization, has been investigated.  An analytical proof,
which shows that Parzen windowing approximation with
Gaussian kernels of the probability distribution function
to be used in entropy computation preserves the original
global minimum of the entropy as one of the minima,
possibly the global minimum, of the estimated entropy
function.  This proof enables us to use Parzen windowing
with Gaussian kernels in entropy estimation safely from
the entropy-minimization point of view.

A time-delay neural network has been trained for the
short-term prediction of the Mackey-Glass chaotic time
series using both the entropy and mean-square-error
criteria.  A Monte Carlo approach has been taken in terms
of the initial weights of the time-delay neural network in
order to avoid the local minimum solutions.  However, it
became evident that even with this approach, the global
minimum of the MSE has not been achieved, since the
entropy solution had smaller error power. The best
solutions obtained by the mean-square-error and the
entropy criteria were compared in terms of the statistical
behavior of the estimation errors and the prediction
values themselves.  The comparison of central moments
of the error distributions revealed the fact that, the error
of the entropy-trained time-delay neural network is closer

to the ideal solution.  The comparison of the central
moments of test data samples and the prediction samples
lead to the same conclusion.  The predictions of the time-
delay neural network trained with the entropy criterion
approximate the statistical behavior of the actual output
of the unknown system better than the one trained with
the men-square-error criterion.
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