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ABSTRACT

The error-entropy-minimization approach in adaptive
system training is addressed in this paper.  The effect of
Parzen windowing on the location of the global minimum
of entropy has been investigated.  An analytical proof that
shows the global minimum of the entropy is a local
minimum, possibly the global minimum, of the non-
parametrically estimated entropy using Parzen
windowing with Gaussian kernels.  The performances of
error-entropy-minimization and the mean-square-error-
minimization criteria are compared in short-term
prediction of a chaotic time series.  Statistical behavior of
the estimation errors and the higher order central
moments of the time series data and its predictions are
utilized as the comparison criteria.

1. INTRODUCTION

Starting with the early work of Wiener [1] on adaptive
filters, the mean square error (MSE) has been almost
exclusively employed in the training of all adaptive
systems including artificial neural networks.  There are
mainly two reasons lying behind this choice: Analytical
simplicity, and the assumption that most real-life random
phenomena may be expressed accurately by the Gaussian
distribution.  The probability density function (pdf) of the
Gaussian is characterized by only its first and second
order statistics.  Hence, under these linearity and
Gaussianity assumptions, MSE, which concentrates on
second order statistics, would be able to extract all
possible information from a data set whose statistics are
solely defined by its mean and variance.

However, most real-life problems are governed by
nonlinear equations and most random phenomena are far
from being normally distributed.  Therefore, for the
training of adaptive systems, a criterion that not only
considers the second order statistics but that also takes

into account the higher-order statistical behavior of the
systems is required.

The entropy of a given probability distribution function,
introduced by Shannon [2], is a scalar quantity that
provides a measure of the average information contained
in the distribution.  By definition, information is a
function of the pdf itself hence the entropy is related to
the pdf rather than any particular statistics of it.

Application of the entropy criterion to the system
identification problem is conceptually quite
straightforward.  Given a time series produced by an
unknown system to be used as the training data, the
entropy of the estimation error over the training data set
must be minimized [3].  The interpretation of this is as
follows.  When entropy of the error is minimized, the
expected information contained in the estimation error is
minimized; hence the adaptive system is trained
optimally in the sense that the mutual information
between the time series and the model output is
maximized.

In practice, an analytical expression for the pdf of a
random variable, which is necessary for the computation
of the entropy, is not available in most cases.  Therefore,
it has to be estimated non-parametrically from the
samples of the random variable.  One way to approximate
the pdf of a given sample distribution is to utilize Parzen
windowing [3].  In Parzen windowing, the pdf is
approximated by a sum of even, symmetric kernels
whose centers are translated to the sample points.  A
suitable and commonly used kernel function is the
Gaussian.  The Gaussian function is preferable because it
is continuously differentiable, and therefore the sum of
Gaussians is continuously differentiable on the space of
real vectors of any dimension.

The organization of the paper is as follows.  First, the
backpropogation training algorithms for both Shannon’s
and Renyi’s entropy with parameter 2 are given for the



one-dimensional case.  Second, an analytical proof
showing us that the global minimum of the entropy is still
a minimum of the Parzen window estimated entropy
when Gaussian kernels are employed.  Then, the results
of a case study where estimation-error-entropy-
minimization criterion is applied to the short-term
prediction of a chaotic time series with a time-delay
neural network (TDNN) are presented.  The
performances of MSE trained and entropy trained
TDNNs are compared in terms of error power and higher
order statistics.

2. BACKPROPOGATION FOR TDNN
TRAINING: ENTROPY CRITERION

A typical system identification scheme with a TDNN is
shown in Fig. 1.  The training criterion is what
characterizes the learning procedure and determines the
overall performance of the final model.

Figure 1: System Identification Scheme

The purpose of this scheme is to find the TDNN weights
that optimize the criterion.   If the adaptation criterion is
chosen to be the minimization of the mean square error,
and the optimization procedure is fixed to be steepest
descent, then the originating training algorithm is the
well-known backpropogation algorithm [4].  However,
due to the reasons stated before, if the adaptation criterion
is picked to be the minimization of Shannon’s entropy of
the error with steepest descent, the training algorithm
becomes
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Here, Shannon’s entropy [2] is given by (2), where the
error pdf is approximated by Parzen windowing with

Gaussian kernels of zero mean and variance 2σ  from its
N samples as shown in (3).
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The gradient to be used in the training algorithm is
therefore
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Here, wxi ∂∂ /ˆ  can be computed as in standard

backpropogation. Note that this algorithm requires the
numerical evaluation of a complicated integral over the
real line.  Therefore, this algorithm is extremely slow and
computationally inefficient.  This problem can be solved
by employing Renyi’s entropy with 2=α  [6].  Renyi’s
entropy with parameter α  is given by [7]
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Note that, for 2=α , this expression becomes as in (6)
and minimization of this reduces the maximization of the
information potential [6]
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In practice, the pdf of error is again estimated using
Parzen windowing as shown in (3), and the gradient
vector to be used in the steepest ascent algorithm for the
maximization of the information potential is found as
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Notice that the sum of integrals in the Shannon’s entropy
case is replaced by a double summation in this algorithm
with a doubling in the standard deviation of the kernel to
be used.  The property that made this possible is that the
integral of two Gaussians with equal standard deviations
is a Gaussian with twice the standard deviation. This
algorithm is much faster compared to the previous one
due to this elimination of the integral.  This derivation
may be easily extended to the multi-variable case.

One important point to be mentioned in training with
entropy is that, the entropy does not change with the
mean of the error over the data set. This can be easily
shown by a simple change of variables of the integration,

i.e. eµξζ −= .  Due to this property of the entropy, the

algorithm will converge, with a probability of one, to a
set of optimal weights, which do not yield zero error-
mean.  However, this can be corrected by modifying the
bias weight of the output neuron properly to yield zero
mean error over the training data set just after training
ends.  It must also be noted that the entropy is a cost
function with many local minima.  The nonlinear nature
of the optimization was experimentally verified.

3. PROOF OF MINIMA EQUIVALENCE

Now we proceed with proving that the global minimum
of the entropy is still a minimum of the non-
parametrically estimated entropy for both Shannon’s
entropy definition and Renyi’s entropy, when Parzen
windowing with Gaussian kernels is utilized.

Shannon’s Entropy:
Shannon’s entropy is given by (2).  Clearly, the global
minimum of Shannon’s entropy is achieved when the pdf
of error is the Dirac-delta function.
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Since entropy is independent of the mean of the error, we
can concentrate on the case where mean of e is zero
without loss of generality.  The gradient of the entropy
for Gaussian kernels is given in (9).  Evaluating this

gradient at [ ] 01 == Neee K ,

∫
∞

∞−=

=−=
∂
∂

0)(log)(
1

2

0

ξξκξξκ
σ

d
Ne

H

ej

S               (10)

since we are integrating an odd function.  Hence 0=e
is a stationary point of )(eH S .  Now we continue with

the computation of the Hessian to see if it is furthermore
a minimum.  Using the same approach as above, the
diagonal and off-diagonal entries of the Hessian are
found to be
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The eigenvalues of the Hessian matrix then can be

computed to be 00 =λ  with multiplicity 1 and

)/(1 2σλ Ni =  with multiplicity (N-1), hence the

Hessian is positive semi definite.  The value of the
entropy may decrease in the direction of the eigenvector
that corresponds to the 0 eigenvalue, which is found as

[ ]Te 1110 K
r =                         (13)

This means, if the error changes along this direction it
will still have constant entries. However, we have shown
above that, the mean of e  does not change the value of
the entropy.  Therefore, when e  changes along the

direction of 0e
r

, the value of the entropy remains

constant.  So we conclude that Shannon’s entropy
approximated by Parzen windowing with Gaussian
kernels has a minimum at the point where error is
completely constant over the whole data set.

Renyi’s Entropy:
Renyi’s entropy is defined by (5), and is known to
approach Shannon’s entropy as α  goes to 1 [7].  It is
also independent of the mean of e .



The gradient of Renyi’s entropy in the case of Gaussian
kernels evaluated at 0=e  is found to be
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Hence 0=e  is a stationary point of Renyi’s entropy
approximated by Parzen windowing with Gaussian
kernels.  After some steps similar to those followed in the
Shannon’s entropy case, the diagonal and off-diagonal
elements of the Hessian matrix evaluated at 0=e  are
found as
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Note that the Hessian matrix for the Renyi’s entropy is
independent of α , and it is identical to the Shannon’s
entropy.  Hence, it has the same eigenvalues as the
Hessian matrix for Shannon’s entropy.  Similarly, the
eigenvector corresponding to the zero eigenvalue is equal
as well and therefore all the arguments related are also
valid for Renyi’s entropy.  Thus we conclude that Renyi’s
entropy approximated by Parzen windowing with
Gaussian kernels has a minimum at the point where the
error is completely constant over the whole data set.

4. SHORT TERM PREDICTION OF
CHAOTIC TIME SERIES

We have seen in the previous sections that the entropy
criterion does not discriminate between pdfs that have
distinct means but exactly the same higher order central
moments.  Therefore, when a TDNN is trained with the
entropy criterion, the expected value of the error over the
training data set will not converge to zero.  We have
mentioned that, this problem can easily be solved by
adjusting the bias weight of the last layer to make the
mean of estimation error zero over the training set after
the learning finishes.  If the output neuron in the TDNN
is chosen to be a linear one, this modification is a simple
addition of the mean of the current error to the bias
weight of the output neuron.

As a case study, the short-term prediction of the Mackey-
Glass chaotic time series [8] with parameter 30=τ
using both MSE trained and (Renyi’s) entropy trained
TDNNs is presented here.  The time-delay TDNN has a
3-tap input, 5 neurons in the hidden layer and a single
linear output neuron.  The embedding dimension is
chosen to be 3 here.  This is less than the embedding
dimension suggested by Taken’s Embedding Theorem,
namely 5, for the Mackey-Glass series [9].  For this size
of the reconstruction space the difficulty level of the
prediction problem increases.  Increased difficulty is
desired since we know that even the MSE criterion
performs quite well for this time series when a 5-tap input
is employed.

The TDNNs are trained over a training data set of length
200 starting from 100 randomly chosen initial weights, so
that hopefully the global optimal solution is one of the
solutions suggested by this Monte Carlo type training
approach.  In this sequence, the weights of the MSE
trained TDNN is iterated 100 times for each initial set of
weights whereas those of the entropy trained TDNN are
iterated for 30 times according to their corresponding
backpropogation algorithms using the conjugate gradient
algorithm [10].  At the end of the mentioned Monte Carlo
training approach, the best set of weights obtained by
each of the criteria are taken and checked for further
improvement by employing a small constant step size.
For this specific case, these extra iterations did not
improve the cost function for either of the criteria.
Finally, the bias weight of the output neuron of both
artificial neural networks are adjusted to give zero mean
error over the training data set after training had finished.

Figure 2: The probability distribution functions for the
estimation errors of MSE and entropy trained TDNNs.

The trained networks are tested on an independently
created test data set of length 10000.  We do not present
the error plots of the two TDNNs over the test data set
here because they do not bear any information when
presented in that form.  Rather, we will concentrate on
the statistical properties of the error signals.  The pdfs of
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these two error distributions approximated by a histogram
of equally spaced 100 bins are shown in Fig. 2.  As
observed from this plot, the error distribution of the
entropy trained TDNN is more concentrated around zero
whereas the error distribution of the MSE trained TDNN
is more uniformly distributed over its support.

Figure 3: The autocorrelation functions of the estimation
errors; MSE trained and entropy trained TDNNs
respectively.

Figure 5: The PSD estimates of the estimation errors.

It is observed from Fig. 3 that, the autocorrelation
function of entropy trained TDNN’s error contains higher
frequency components compared to that of the MSE
trained TDNN.  This is also evident from the PSD
estimates of the two random processes.  The PSD of the
error of entropy trained TDNN decays slower than that of
the MSE trained one in the lower frequencies.

For completeness, we present here the data with its
estimations superimposed.  The data window is chosen to
include the point where the entropy trained TDNN makes
its maximum error, namely the sample 3438.

Figure 6: The short-term prediction of Mackey-Glass
time series by MSE and entropy trained TDNNs.

We investigate the central moments of the two error
distributions for a more quantitative comparison.  The
obvious ideal solution should have a Dirac-delta
distributed error.  All central moments of this desired
error distribution are zero.  In other words, we would like
the central moments of the error distribution as close to
zero as possible.  The following table lists the first 5
central moments of the error distributions for the two
training criteria.

n ])[( nMSE
e

MSEeE µ− ])[( nEnt
e

EnteE µ−
1 0 0
2 0.377x10-3 0.285x10-3

3 0.227x10-5 -0.859x10-6

4 0.271x10-6 0.208x10-6

5 0.372x10-8 -0.27 x10-8

Table 1: Central Moments of the error distributions.

Another way of looking at the same problem is to
compare the central moments of the data distribution and
the predicted time series distribution.  What we are
essentially trying to do is to match the probability
distribution of the estimated time series to that of the data
samples.  In other words, we would like the central
moments of the predictions to be as close to those of the
test data set as possible.  The central moments of the test
data set and the predictions by the MSE and entropy
trained TDNNs are given next.

n ])[( n
xxE µ− ])ˆ[( ˆ

nMSE
x

MSExE µ− ])ˆ[( ˆ
nEnt

x
EntxE µ−

1 0 0 0
2 1.585x10-2 1.248x10-2 1.6x10-2

3 1.085x10-3 0.785x10-3 1.383x10-3

4 6.186x10-4 3.845x10-4 6.838x10-4

5 8.998x10-5 5.125x10-5 12.197x10-5

Table 2: Central Moments of the desired data samples
and the prediction samples.
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Note that the even moments of the entropy-trained
predictor are very well matched to the original time
series, while the odd moments are still in error, but above
the true values.  The moments of the MSE trained
predictor are always smaller than the original, tending to
a uniform error distribution.

These results point out clearly that the TDNN predictions
approximate the statistical behavior of the Mackey-Glass
chaotic attractor better when it is trained with the entropy
criterion compared to the MSE criterion.  The pdf
estimations of the test data and the TDNN predictions for
these data are presented in the following figure with a
histogram of equally spaced 100 bins.

Figure 7: The histogram of the MG30 and its predictions
by entropy-trained and MSE-trained TDNNs
respectively.

5. CONCLUSIONS

In this paper, an information theoretical learning criterion
for adaptive systems, namely estimation-error-entropy-
minimization, has been investigated.  An analytical proof,
which shows that Parzen windowing approximation with
Gaussian kernels of the probability distribution function
to be used in entropy computation preserves the original
global minimum of the entropy as one of the minima,
possibly the global minimum, of the estimated entropy
function.  This proof enables us to use Parzen windowing
with Gaussian kernels in entropy estimation safely from
the entropy-minimization point of view.

A time-delay neural network has been trained for the
short-term prediction of the Mackey-Glass chaotic time
series using both the entropy and mean-square-error
criteria.  A Monte Carlo approach has been taken in terms
of the initial weights of the time-delay neural network in
order to avoid the local minimum solutions.  However, it
became evident that even with this approach, the global
minimum of the MSE has not been achieved, since the

entropy solution had smaller error power. The best
solutions obtained by the mean-square-error and the
entropy criteria were compared in terms of the statistical
behavior of the estimation errors and the prediction
values themselves.  The comparison of central moments
of the error distributions revealed the fact that the error of
the entropy-trained time-delay neural network is closer to
the ideal solution.  The comparison of the central
moments of test data samples and the prediction samples
lead to the same conclusion.  The predictions of the time-
delay neural network trained with the entropy criterion
approximate the statistical behavior of the actual output
of the unknown system better than the one trained with
the men-square-error criterion.
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