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INTRODUCTION 

Learning systems depend on three interrelated components: topologies, 
cost/performance functions, and learning algorithms. Topologies provide the constraints 
for the mapping, and the learning algorithms offer the means to find an optimal solution; 
but the solution is optimal with respect to what? Optimality is characterized by the 
criterion and in neural network literature, this is the least addressed component, yet it has 
a decisive influence in generalization performance. Certainly, the assumptions behind the 
selection of a criterion should be better understood and investigated. 

Traditionally, least squares has been the benchmark criterion for regression 
problems; considering classification as a regression problem towards estimating class 
posterior probabilities, least squares has been employed to train neural network and other 
classifier topologies to approximate correct labels. The main motivation to utilize least 
squares in regression simply comes from the intellectual comfort this criterion provides 
due to its success in traditional linear least squares regression applications – which can be 
reduced to solving a system of linear equations. For nonlinear regression, the assumption 
of Gaussianity for the measurement error combined with the maximum likelihood 
principle could be emphasized to promote this criterion. In nonparametric regression, 
least squares principle leads to the conditional expectation solution, which is intuitively 
appealing. Although these are good reasons to use the mean squared error as the cost, it is 
inherently linked to the assumptions and habits stated above. Consequently, there is 
information in the error signal that is not captured during the training of nonlinear 
adaptive systems under non-Gaussian distribution conditions when one insists on second-
order statistical criteria. This argument extends to other linear-second-order techniques 
such as principal component analysis (PCA), linear discriminant analysis (LDA), and 
canonical correlation analysis (CCA). Recent work tries to generalize these techniques to 
nonlinear scenarios by utilizing kernel techniques or other heuristics. This begs the 
question: what other alternative cost functions could be used to train adaptive systems 
and how could we establish rigorous techniques for extending useful concepts from linear 
and second-order statistical techniques to nonlinear and higher-order statistical learning 
methodologies? 
 
BACKGROUND 

This seemingly simple question is at the core of recent research on information 
theoretic learning (ITL) conducted by the authors, as well as research by others on 



 

alternative optimality criteria for robustness to outliers and faster convergence, such as 
different Lp-norm induced error measures (Sayed, 2005), the epsilon-insensitive error 
measure (Scholkopf & Smola, 2001), Huber’s robust m-estimation theory (Huber, 1981), 
or Bregman’s divergence based modifications (Bregman, 1967). Entropy is an 
uncertainty measure that generalizes the role of variance in Gaussian distributions by 
including information about the higher-order statistics of the probability density function 
(pdf) (Shannon & Weaver, 1964; Fano, 1961; Renyi, 1970; Csiszár & Körner, 1981). For 
on-line learning, information theoretic quantities must be estimated nonparametrically 
from data. A nonparametric expression that is differentiable and easy to approximate 
stochastically will enable importing useful concepts such as stochastic gradient learning 
and backpropagation of errors. The natural choice is kernel density estimation (KDE) 
(Parzen, 1967), due its smoothness and asymptotic properties. The plug-in estimation 
methodology (Gyorfi & van der Meulen, 1990) combined with definitions of Renyi 
(Renyi, 1970), provides a set of tools that are well-tuned for learning applications – tools 
suitable for supervised and unsupervised, off-line and on-line learning. Renyi’s definition 
of entropy for a random variable X is 
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This generalizes Shannon’s linear additivity postulate to exponential additivity resulting 
in a parametric family. Dropping the logarithm for optimization simplifies algorithms. 
Specifically of interest is the quadratic entropy (α=2), because its sample estimator 
requires only one approximation (the density estimator itself) and an analytical 
expression for the integral can be obtained for kernel density estimates. Consequently, a 
sample estimator for quadratic entropy can be derived for Gaussian kernels of standard 
deviation σ on an iid sample set {x1,…,xN} as the sum of pairwise sample (particle) 
interactions (Principe et al, 2000): 
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 The pairwise interaction of samples through the kernel intriguingly provides a 
connection to entropy of particles in physics. Particles interacting trough information 
forces (as in the N-body problem in physics) can employ computational techniques 
developed for simulating such large scale systems. The use of entropy in training 
multilayer structures can be studied in the backpropagation of information forces 
framework (Erdogmus et al, 2002). The quadratic entropy estimator was employed in 
measuring divergences between probability densities and blind source separation (Hild et 
al, 2006), blind deconvolution (Lazaro et al, 2005), and clustering (Jenssen et al, 2006). 
Quadratic expressions with mutual-information-like properties were introduced based on 
the Euclidean and Cauchy-Schwartz distances (ED/CSD). These are advantageous with 
computational simplicity and statistical stability in optimization (Principe et al, 2000). 

Following the conception of information potential and force and principles, the 
pairwise-interaction estimator is generalized to use arbitrary kernels and any order α of 
entropy. The stochastic information gradient (SIG) is developed (Erdogmus et al, 2003) 
to train adaptive systems with a complexity comparable to the LMS (least-mean-square) 
algorithm - essential for training complex systems with large data sets. Supervised and 



 

unsupervised learning is unified under information-based criteria. Minimizing error 
entropy in supervised regression or maximizing output entropy for unsupervised learning 
(factor analysis), minimization of mutual information between the outputs of a system to 
achieve independent components or maximizing mutual information between the outputs 
and the desired responses to achieve optimal subspace projections in classification is 
possible. Systematic comparisons of ITL with conventional MSE in system identification 
verified the advantage of the technique for nonlinear system identification and blind 
equalization of communication channels. Relationships with instrumental variables 
techniques were discovered and led to the error-whitening criterion for unbiased linear 
system identification in noisy-input-output data conditions (Rao et al, 2005). 
 
SOME IDEAS IN AND APPLICATIONS OF ITL 
 Kernel Machines and Spectral Clustering: KDE has been motivated by the 
smoothness properties inherent to reproducing kernel Hilbert spaces (RKHS). Therefore, 
a practical connection between KDE-based ITL, kernel machines, and spectral machine 
learning techniques was imminent. This connection was realized and exploited in recent 
work that demonstrates an information theoretic framework for pairwise similarity 
(spectral) clustering, especially normalized cut techniques (Shi & Malik, 2000). 
Normalized cut clustering is shown to determine an optimal solution that maximizes the 
CSD between clusters (Jenssen, 2004). This connection immediately allows one to 
approach kernel machines from a density estimation perspective, thus providing a robust 
method to select the kernel size, a problem still investigated by some researchers in the 
kernel and spectral techniques literature. In our experience, kernel size selection based on 
suitable criteria aimed at obtaining the best fit to the training data - using Silverman’s 
regularized squared error fit (Silverman, 1986) or leave-one-out cross-validation 
maximum likelihood (Duin, 1976), for instance - has proved to be convenient, robust, and 
accurate techniques that avoid many of the computational complexity and load issues. 
Local data spread based modifications resulting in variable-width KDE are also observed 
to be more robust to noise and outliers. 

 An illustration of ITL clustering by maximizing the CSD between the two 
estimated clusters is provided in Figure 1. The samples are labeled to maximize 
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where p and q are KDE for two candidate clusters, f is the overall data KDE and the 
weighted inner product to measure angular distance between clusters is 
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When estimated using a weighted KDE variant, this criterion becomes equivalently 
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where K1/f is an equivalent kernel generated from the original kernel K (Gaussian here). 
One difficulty with kernel machines is their nonparametric nature, the requirement to 
solve for the eigendecomposition of a large positive-definite matrix that has size N×N, for 
N training samples. The solution is a weighted sum of kernels evaluated over each 
training sample, thus the test procedure for each novel sample involves evaluating the 
sum of N kernels: 1 ( )N

ktest k test ky w K x x== −∑ . The Fast Gauss Transform (FGT) 
(Greengard, 1991), which uses the polynomial expansions for a Gaussian (or other) 
kernel has been employed to overcome this difficulty. FGT carefully selects few center 
points around which truncated Hermite polynomial expansions approximate the kernel 
machine. FGT still requires heavy computational load in off-line training (minimum 
O(N2), typically O(N3)). The selection of expansion centers is typically done via 
clustering (e.g., Ozertem & Erdogmus, 2006). 

 Correntopy as a Generalized Similarity Metric: The main feature of ITL is that 
it preserves the universe of concepts we have in neural computing, but allows the 
adaptive system to extract more information from the data. For instance, the general 
Hebbian principle is reduced into a second order metric in traditional artificial neural 
network literature (input-output product), thus becoming a synonym for second order 
statistics. The learning rule that maximizes output entropy (instead of output variance), 
using SIG with Gaussian kernels is ))1()())(1()(()( −−−−=Δ nynynxnxnw η  (Erdogmus et al, 
2002), which still obeys the Hebbian principle, yet extracts more information from the 
data (leading to the error-whitening criterion for input-noise robust learning). 
 ITL quantifies global properties of the data, but will it be possible to apply it to 
functions, specifically those in RKHS? A concrete example is on similarity between 

Figure 1. Maximum CSD clustering of two synthetic benchmarks: training and novel test
data (left), KDE using Gaussian kernels with Silverman-kernel-size (center), and spectral
projections of data on two dominant eigenfunctions of the kernel. The eigenfunctions are
approximated using the Nystrom formula. 



 

random variables, which is typically expressed as second order correlation. Correntropy 
generalizes similarity to include higher order moment information. The name indicates 
the strong relation to correlation, but also stresses the difference – the average over the 
lags (for random processes) or over dimensions (for multidimensional random variables) 
is the information potential, i.e. the argument of second order Renyi’s entropy. For 
random variables X and Y with joint density p(x,y), correntropy is defined as 

  ( , ) ( ) ( , )V X Y x y p x y dxdyδ= −∫ ∫  (6) 
and measures how dense the two random variables are along the line x=y in the joint 
space. Notice that it is similar to correlation, which also asks the same question in a 
second moment framework. However, correntropy is local to the line x=y, while 
correlation is quadratically dependent upon distances of samples in the joint space. Using 
a KDE with Gaussian kernels 
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Correntropy is a positive-definite function, thus defines a RKHS. Unlike correlation, 
RKHS is nonlinearly related to the input, because all moments of the random variable are 
included in the transformation. It is possible to analytically solve for least squares 
regression and principal components in this space, yielding nonlinear fits in input space. 
Correntopy induced metric (CIM) behaves as the L2-norm for small distances and 
progressively approaches the L1-norm and then converges to L0 at infinity. Thus 
robustness to outliers is automatically achieved and equivalence to Huber’s robust 
estimation can be proven (Santamaria, 2006). Unlike conventional kernel methods, 
correntropy solutions remain in the same dimensionality as the input vector. This might 
indicate built-in regularization properties, yet to be explored. 

 Nonparametric Learning in the RKHS: It is possible to obtain robust solutions to 
a variety of problems in learning using the nonparametric and local nature of KDE and its 
relationship with RKHS theory. Recently, we explored the possibility of designing 
nonparametric solutions to the problem of identifying nonlinear dimensionality reduction 
schemes that maintain maximal discriminative information in a pattern recognition 
problem (quite appropriately measured by the mutual information between the data and 
the class labels as agreed upon by many researchers). Using the RKHS formalism and 
based on the KDE, results were obtained that consistently outperformed the alternative 
rather heuristic kernel approaches such as kernel PCA and kernel LDA (Scholkopf & 
Smola, 2001). The conceptual oversight in the latter two is that, both PCA and LDA 
procedures are most appropriate for Gaussian distributed data (although acceptable for 
other symmetric unimodal distributions and are commonly but possibly inappropriately 
used for arbitrary data distributions). 



 

 Clearly, the distribution of the data in the kernel induced feature space could not be 
Gaussian for all typically exploited kernel selections (such as the Gaussian kernel), since 
these are usually translation invariant, therefore the data is, in principle, mapped to an 
infinite dimensional hypersphere on which the data could not have been Gaussian 
distributed (nor symmetrically distributed in general for the ideal kernel for a given 
problem since these are positive definite functions). Consequently, the hasty use of kernel 
extensions of second-order techniques is not necessarily optimal in a meaningful 
statistical sense. Nevertheless, these techniques have found successful applications in 
various problems; however, their suboptimality is clear from comparisons with more 
carefully designed solutions. In order to illustrate how drastic the performance difference 
could be, we present a comparison of a mutual information based nonlinear 
nonparametric projection approach (Ozertem et al, 2006) and kernel LDA in a simplified 
two-class handwritten digit classification case study and sonar mine detection case study. 
The ROC curves of both algorithms on the test set after being trained with the same data 
is shown in Figure 2. The kernel is assumed to be a circular Gaussian with size set to 
Silverman’s rule-of-thumb. For the sonar data, we also include KDE-based approximate 
Bayes classifier and linear LDA for reference. In this example, KLDA performs close to 
mutual information projections, as observed occasionally. 

 
FUTURE TRENDS 

Nonparametric Snakes, Principal Curves and Surfaces: More recently, we have 
been investigating the application of KDE and RKHS to nonparametric clustering, 
principal curves and surfaces. Interesting mean-shift-like fixed-point algorithms have 
been obtained; specifically interesting is the concepts of nonparametric snakes (Ozertem 
& Erdogmus, 2007) and local principal manifolds (Erdogmus & Ozertem, 2007) that we 
developed recently. The nonparametric snake approach overcomes the principal 
difficulties experienced by snakes (active contours) for image segmentation, such as low 
capture range, data curvature inhomogeneity, and noisy and missing edge information. 

Figure 2. Maximum mutual information projection versus kernel LDA test ROC results
on hand-written digit recognition shown in terms of type-1 and type-2 errors (left); ROC
results (Pdetect vs Pfalse) compared for various techniques on sonar data. Both data are from
the UCI Machine Learning Repository (2007).  

 



 

Similarly, the local conditions for determining whether a point is in a principal manifold 
or not provide guidelines for designing fixed point and other iterative learning algorithms 
for identifying such important structures. 

Specifically in nonparametric snakes, we treat the edgemap of an image as samples 
and the values of the edginess as weights to construct a weighted KDE, from which, a 
fixed point iterative algorithm can be devised to detect the boundaries of an object in 
background. The designed algorithm can be easily made robust to outlier edges, 
converges very fast, and can penetrate into concavities, while not being trapped into the 
object at missing edge localities. The guitar image in Figure 3 emphasizes these 
advantages as the image exhibits both missing edges and concavities, while background 
complexity is trivially low as that was not the main concern in this experiment – the 
variable width KDE easily avoids textured obstacles. The algorithm could be utilized to 
detect the ridge-boundary of a structure in any dimensional data set in other applications. 

In defining principal manifolds, we avoided the traditional least-squares error 
reconstruction type criteria, such as Hastie’s self-consistent principal curves (Hastie & 
Stuetzle, 1989), and proposed a local subspace maximum definition for principal 
manifolds inspired by differential geometry. This definition lends itself to a uniquely 
defined principal manifold hierarchy such that one can use inflation and deflation to 
obtain a d-dimensional principal manifold from a (d+1)-dimensional principal manifold. 
The rigorous and local definition lends itself to easy algorithm design and multiscale 
principal structure analysis for probability densities. We believe that in the near future, 
the community will be able to prove maximal information preserving properties of 
principal manifolds obtained using this definition in a manner similar to mean-shift 
clustering solving for minimum information distortion clustering (Rao et al, 2006) and 
maximum likelihood modelling achieving minimum Kullback-Leibler divergence 
asymptotically (Carreira-Perpinan & Williams, 2003; Erdogmus & Principe, 2006). 
 
CONCLUSION  
 The use of information theoretic learning criteria in neural networks and other 
adaptive system solutions have so far clearly demonstrated a number of advantages that 

 
Figure 3. Nonparametric snake after convergence from an initial state that was located at
the boundary of the guitar image rectangle (left). The global principal curve of a mixture
of ten Gaussians obtained according to the local subspace maximum definition for
principal manifolds (right).  



 

arise due to the increased information content of these measures relative to second-order 
statistics (Erdogmus & Principe, 2006). Furthermore, the use of kernel density estimation 
with smooth kernels allows one to obtain continuous and differentiable criteria suitable 
for iterative descent/ascent-based learning and the nonparametric nature of KDE and its 
variants (such as variable-size kernels) allow one to achieve simultaneously robustness, 
global optimization through kernel annealing, and data modeling flexibility in designing 
neural networks and learning algorithms for a variety of benchmark problems. Due to 
lack of space, detailed mathematical treatments cannot be provided in this article; the 
reader is referred to the literature for details. 
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TERMS AND DEFINITIONS 
Cauchy-Schwartz Distance: An angular density distance measure in the Euclidean 

space of probability density functions that approximates information theoretic 
divergences for nearby densities. 

Correntropy: A statistical measure that estimates the similarity between two or more 
random variables by integrating the joint probability density function along the 
main diagonal of the vector space (line along ones). It relates to Renyi’s entropy 
when averaged over sample-index lags. 

Information Theoretic Learning: A technique that employs information theoretic 
optimality criteria such as entropy, divergence, and mutual information for learning 
and adaptation. 

Information Potentials and Forces: Physically intuitive pairwise particle interaction 
rules that emerge from information theoretic learning criteria and govern the 
learning process, including backpropagation in multilayer system adaptation. 

Kernel Density Estimate: A nonparametric technique for probability density function 
estimation. 

Mutual Information Projections: Maximally discriminative nonlinear nonparametric 
projections for feature dimensionality reduction based on the reproducing kernel 
Hilbert space theory. 

Renyi Entropy: A generalized definition of entropy that stems from modifying the 
additivity postulate and results in a class of information theoretic measures that 
contain Shannon’s definitions as special cases. 

Stochastic Information Gradient: Stochastic gradient of nonparametric entropy 
estimate based on kernel density estimation. 


