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1 Introduction

In pattern recognition, a classifier is trained solve the multiple hypotheses test-
ing problem in which a particular input feature vector’s membership to one of
the classes is assessed. Given a finite number of training examples, feature di-
mensionality reduction to improve generalization and optimal exploitation of
the information content in the feature vector regarding class labels is essential.
Such dimensionality reduction enables the classifier to achieve improved gen-
eralization through: (i) eliminating redundant dimensions that do not convey
reliable statistical information for classification, (ii) determining a manifold
on which projections of the original high dimensional feature vector exhibit
maximal information about the class label, and (iii) reducing the complexity
of the classifier to help avoid over-fitting. In other words, feature dimensional-
ity reduction through projections with various constraints can exploit salient
features and eliminate irrelevant feature fluctuations by representing the dis-
criminative information in a lower dimensional manifold embedded in the
original Euclidean feature space.

In principle, the maximally discriminative dimensionality reduction solu-
tion is typically nonlinear - in fact, the minimum-risk Bayesian classifier can
be interpreted as the optimal nonlinear dimensionality reduction mapping.
However, given finite amount of training data, arbitrary robust nonlinear pro-
jections are challenging to obtain, thus there is wide interest in the literature in
finding regularized nonlinear projections as well as simple linear projections.
Furthermore, in some situations, such as real-time brain computer interfaces,
it is even desirable to completely eliminate the computational and hardware
requirements of evaluating the values of certain features, in which case feature
selection - a special case of linear projections constrained to sparse orthonor-
mal matrices - is required. Existing approaches for feature dimensionality
reduction can be classified into the so-called wrapper and filter categories.

The wrapper approach aims to identify the optimal feature dimensionality
reduction solution for a particular classifier, therefore involves repeatedly ad-
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justing the projection network based on the cross validation performance of a
corresponding trained classifier with the particular topology. This approach is
theoretically the optimal procedure to find the optimal feature dimensionality
reduction given a particular training set, a specific classifier topology, and a
particular projection family. However, repeated training of the classifier and
iterative learning of the projection network under this framework is computa-
tionally very expensive and could easily become unfeasible when the original
feature dimensionality is very high and the number of training samples is
large. The complexity is further increased by the cross-validation procedure
and repeated training of the classifier to ensure global optimization, if partic-
ular topologies that are prone to local optima, such as neural networks, are
selected. It is also widely accepted, and is intuitive, that some classification
algorithms, such as decision tree, multi-layer perceptron neural networks have
inherent ability to focus on relevant features and ignore irrelevant ones, when
properly trained [1].

The filter approach provides a more flexible and computationally attrac-
tive approach at the expense of not identifying the optimal feature-classifier
combination. This technique relies on training a feature projection network
through the optimization of a suitable optimality criterion that is relevant to
classification error/risk. Since the filter approach decouples the feature pro-
jection optimization from the following classifier-training step, this approach
enables the designer to conveniently compare the performance of various clas-
sifier topologies on the reduced dimensionality features obtained through the
filter approach. In this chapter, we will propose linear and nonlinear feature
projection network training methodologies based on the filter approach. These
projections will be optimized to approximately maximize the mutual informa-
tion between the reduced dimensionality feature vector and the class labels.
The selection of mutual information is motivated by information theoretic
bounds relating Bayes probability of error for a particular feature vector and
its mutual information with the class labels. Specifically, Fano’s lower bound
[2, 3, 4] provides a performance bound on the classifiers and more importantly
the Hellman-Raviv bound [2, 3, 4], expressed as pe ≤ (H(C) − I(x;C))/2
where C are the class labels corresponding to feature vectors x, pe denotes
the minimum probability of error, which is obtained with a Bayes classifier,
and H and I denote Shannon’s entropy and mutual information, respectively.
The entropy of the class labels depends only on the class priors. Consequently,
maximizing the mutual information between the (projected) features and the
class labels results in a dimensionality reduction that minimizes this tight
bound on Bayes error. The maximum mutual information principle outlined
here can be utilized to solve the following three general problems: determin-
ing optimal (i) feature ranking and selection, (ii) linear feature projections,
and (iii) nonlinear feature projections that contain maximal discriminative in-
formation, minimal redundancy, and irrelevant statistical variations. Earlier
work on utilizing mutual information to select input features for a classifier
includes [5, 6, 7, 8].
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Many feature selection and projection methods have been developed in
the past years [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Guyon and Elisseeff
also reviewed several approaches used in the context of machine learning [19].
The possibility of learning the optimal feature projections sequentially de-
creases the computational requirements making the filter approach especially
attractive. Perhaps, historically the first dimensionality reduction technique is
linear principle components analysis (PCA) [9, 10]. Although this technique is
widely used, its shortcomings for pattern recognition are well known. A gen-
eralization to nonlinear projections, Kernel PCA [20], still exhibits the same
shortcoming; the projected features are not necessarily useful for classifica-
tion. Another unsupervised (i.e., ignorant of class labels) projection method
is independent component analysis (ICA), a modification of the uncorrelated-
ness condition in PCA to independence, in order to account for higher order
statistical dependencies in non-Gaussian distributions [21]. Besides statistical
independence, source sparsity and nonnegativity is also utilized as a statisti-
cal assumption in achieving dimensionality reduction through sparse bases, a
technique called nonnegative matrix factorization (NMF) [22]. These meth-
ods, however, are linear and restricted in their ability to generate versatile pro-
jections for curved data distributions. Local linear projections is an obvious
method to achieve globally nonlinear yet locally linear dimensionality reduc-
tion. One such method that aims to achieve dimensionality reduction while
preserving neighborhood topologies is local linear embedding (LLE) [23]. Ex-
tensions of this approach to supervised local linear embeddings that consider
class label information also exist [24]. Linear Discriminant Analysis (LDA)
attempts to eliminate the shortcoming of PCA by finding linear projections
that maximize class separability under the Gaussian distribution assumption
[11]. The LDA projections are optimized based on the means and covariance
matrix of each class, which are not descriptive of an arbitrary probability den-
sity function (pdf). In addition, only linear projections are considered. Kernel
LDA [25], generalizes this principle to finding nonlinear projections under the
assumption that the kernel function induces a nonlinear transformation (de-
pendent on the eigenfunctions of the kernel) that first projects the data to
a hypothetical high dimensional space where the Gaussianity assumption is
satisfied. However, the kernel functions used in practice do not necessarily
guarantee the validity of this assumption. Nevertheless, empirical evidence
suggests that robust nonparametric solutions to nonlinear problems in pat-
tern recognition can be obtained by first projecting the data into a higher
dimensional space (possibly infinite) determined by the eigenfunctions of the
selected interpolation kernel. The regularization of the solution is achieved by
the proper selection of the kernel. Torkkola [14] proposes utilizing quadratic
density distance measures to evaluate an approximate mutual information
measure to find linear and parametric nonlinear projections, based on the
early work on information theoretic learning [26], and Hild et al [18] pro-
pose optimizing similar projections using a discriminability measure based on
Renyi’s entropy. The latter two proposals are based on utilizing the nonpara-
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metric kernel density estimation (KDE) technique (also referred to as Parzen
windowing) [27].

Estimating mutual information requires assuming a pdf estimate explic-
itly or implicitly. Since the data pdf might take complex forms, in many
applications determining a suitable parametric family becomes a nontrivial
task. Therefore, mutual information is typically estimated more accurately
using nonparametric techniques [28, 29]. Although this is a challenging prob-
lem for two continuous-valued random vectors, in the feature transformation
setting the class labels are discrete-valued. This reduces the problem to sim-
ply estimating multidimensional entropies of continuous random vectors. The
entropy can be estimated nonparametrically using a number of techniques.
Entropy estimators based on sample spacing, such as the minimum spanning
tree, are not differentiable making them unsuitable for adaptive learning of
feature projections [29, 30, 31, 32, 33]. On the other hand, entropy estimators
based on kernel density estimation (KDE) provide a differentiable alternative
[28, 33, 34].

In this chapter we derive and demonstrate computationally efficient al-
gorithms for estimating and optimizing mutual information, specifically for
the purpose of learning optimal feature dimensionality reduction solutions in
the context of pattern recognition. Nevertheless, the estimators could be uti-
lized in other contexts. These techniques and algorithms will be applied to the
classification of multichannel EEG signals for brain computer interface design,
as well as sonar imagery for target detection. Results will be compared with
widely used benchmark alternatives such as LDA and kernel LDA.

2 Nonparametric Estimators for Entropy and Mutual

Information with a Discrete Variable

The probability distribution of a feature vector x ∈ ℜn is a mixture of class
distributions conditioned on the class label c :p(x) =

∑
c pcp(x|c). Maximiz-

ing mutual information between the projected features and the class labels
requires implicitly or explicitly estimating this quantity. Shannon’s mutual
information between the continuous feature vector and the discrete class la-
bel can be expressed in terms of the overall Shannon entropy of the features
and their average class conditional entropy: I(x; c) = H(c) −

∑
c pcH(x|c).

Specifically, the Shannon joint entropy for a random vector x and this vector
conditioned on a discrete label c are defined as:

H(x) = −
∫

p(x)log(p(x))dx, H(x|c) = −
∫

p(x|c)log(p(x|c))dx (1)

This demonstrates that estimating the mutual information between a con-
tinuous valued random feature vector and a discrete valued class label is rela-
tively easy since only multiple joint entropy estimates (including conditionals)
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with the dimensionality of the feature vector of interest need to be obtained.
Given a finite labeled training data set {(x1, c1), . . . , (xN , cN )}, where ci takes
one of the class labels as its value, the multidimensional entropy terms in (1)
can be estimated nonparametrically with most convenience, although para-
metric and semiparametric estimates are also possible to obtain. The para-
metric approach assumes a family of distributions for the class conditional
densities and utilizes Bayesian model fitting techniques, such as maximum
likelihood. For iterative optimization of mutual information, this procedure is
computationally very expensive, therefore not always feasible. Semiparamet-
ric approaches utilize a suitable truncated series expansion to approximate
these distributions around a reference density (for instance, Hermite polyno-
mial expansion around a multivariate Gaussian is commonly utilized in the
independent component analysis literature and leads to the well known kurto-
sis criterion in that context) [21]. These estimates are accurate provided that
the reference density is selected appropriately and the series converges fast,
so that low-order truncations yield accurate approximations.

In this chapter, we will place the most emphasis on nonparametric estima-
tors of entropy and mutual information due to their computational simplicity
and versatile approximation capabilities. Various approaches that depend on
pairwise sample distances and order statistics (such as ranked samples and
minimum spanning trees). All of these approaches can in fact be explained
as special cases of kernel density estimator based plug-in entropy estimation.
Specifically, variable kernel size selection results in highly accurate density
representations, therefore entropy estimates. For a sample set {x1, . . . ,xN}
the kernel density estimate with variable kernel size is:

p(x) ≈ N−1
N∑

k=1

KΣk
(x − xk) (2)

where typical kernel functions in the literature are uniform (leads to K -
nearest-neighbor sliding histogram density estimates) and Gaussian. Espe-
cially important is the latter, since the Gaussian kernel is commonly utilized
in many kernel machine solutions to nonlinear regression, projection, and clas-
sification problems in machine learning:

GΣ(ξ) = exp(−ξT Σ−1ξ/2)/
√

(2π)n|Σ| (3)

where n is the dimensionality of the kernel function.
In this chapter, parametric and semiparametric approaches will be briefly

reviewed and sufficient detail will be provided for the reader to understand the
basic formulations. In addition, detailed expressions for various nonparametric
estimators will be provided, their theoretical properties will be presented,
and their application to the determiniation of maximally informative and
discriminative feature projections will be illustrated with many real datasets
including EEG classification in the context of brain interfaces, neuron spike



6 Deniz Erdogmus, Umut Ozertem and Tian Lan

detection from microelectrode recordings, and target detection in synthetic
aperture radar imagery.

2.1 Parametric Entropy Estimation

The parametric approach relies on assuming a family of distributions (such as
the Gaussian, Beta, Exponential, mixture of Gaussians, etc.) that paramet-
rically describes each candidate distribution. The optimal pdf estimate for
the data, is then determined using maximum likelihood (ML) or maximum
a posteriori (MAP) statistical model fitting using appropriate regularization
through model order selection criteria. For example, the ML estimate yields
p(x;ΘML) as the density estimate by solving

ΘML = arg max
Θ

N∑

k=1

log p(xk;Θ) (4)

where p(xk;Θ) is the selected parametric family of distributions. The modeling
capability of the parametric approach can be enhanced by allowing mixture
models (such as mixture of Gaussians), in which case, the family of distribu-
tions is in the form:

p(x; {αk, Θk} =

M∑

k=1

αk G(x, Θk) (5)

Once the density estimate is optimized as described, it is plugged-in to
the entropy expression to yield the sample estimator for entropy, which is
obtained in two-stages, since analytical expressions for the entropy of most
parametric families is not available. Using the sample mean approximation
for expectation, we obtain:

H(x) ≈ − 1

N

N∑

j=1

logp(xj ;ΘML) (6)

The difficulty with parametric methods in learning optimal feature projec-
tions is that it requires solving an optimization problem (namely ML or other
model fitting procedure) within the main projection optimization problem.
Another drawback of the parametric approach is the insufficiency of para-
metric models for general-purpose data modeling tasks. As the features in an
arbitrary pattern recognition problem might exhibit very complicated struc-
tures, the selected parametric family for modeling might remain too simplistic
to be able to accurately model all possible variations of the data distribution
during learning. It can be shown that the ML density estimate asymptotically
converges to the member of the parametric family that minimizes the KLD
with the true underlying density [35].
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An alternative approach to parametric estimation involves exploiting the
maximum entropy principle. Consider the following constrained optimization
problem that seeks the maximum entropy distribution given some nonlinear
moments:

max
p(x)

= −
∫

p(x)log p(x)dx sub. to

∫
p(x)fk(x)dx = αk k = 0, 1, . . . ,m (7)

where f0(x) = 1 and α0 = 1 1 in order to guarantee normality. The solution
to this maximum entropy density problem is in the form of an exponential:
p(x) = exp(λ0 +

∑m
k=1 λkfk(x)), where the Lagrange multipliers can be ap-

proximated well by solving a linear system of equations if the true data distri-
bution is close to the maximum entropy density with the same moments [36].
Further refinement can be obtained using these estimates as initial condition
in a fixed-point equation solver for the constraints in (7). In this form, given
the Lagrange multipliers, the entropy is easy to calculate:

H(x) = −
∫

p(x)λ0 +

m∑

k=1

λkfk(x)dx = −λ0 −
m∑

k=1

λkαk (8)

The nonlinear moment functions can be selected to be various polynomial
series, such as Taylor, Legendre, or Hermite (the first one is the usual poly-
nomials and the latter two are explained below).

2.2 Semiparametric Entropy Estimation

The semiparametric approach provides some additional flexibility over the
parametric approaches as they are based on using a parametric density model
as the reference point (in the Taylor series expansion) and additional flexibility
is introduced in terms of additional series coefficients. Below, we present a few
series expansion models for univariate density estimation including Legendre
and Gram-Charlier series. Multidimensional versions become computation-
ally infeasible due to the combinatorial expansion of cross terms and their
associated coefficients [21].

Legendre Series Expansion: Consider the Legendre polynomials defined
recursively as follows using the initial polynomials P0(x) = 1 and P1(x) = x:

Pk(x) =
1

k
[(2k − 1)x Pk−1(x) − (k − 1)P(k − 2)(x)] k ≥ 2 (9)

Any pdf (satisfying certain continuity and smoothness conditions) can ex-
pressed in terms of the Legendre polynomials and in terms of polynomial
statistics of the data.

q(x) =

∞∑

k=0

(k +
1

2
)E[Pk(X)]Pk(x) (10)



8 Deniz Erdogmus, Umut Ozertem and Tian Lan

The expectations can be approximated by sample mean approximations to
obtain an approximation from a finite sample set.

Gram-Charlier Series Expansion: The characteristic function of a distri-
bution q(x), denoted by Φq(w), can be expressed in terms of characteristic
function Φr(w) of an arbitrary reference distribution r(x) as

Φq(w) = exp(

∞∑

k=1

(cq,k − cr,k)
(jw)k

k!
)Φr(w) (11)

where cq,k and cr,k cumulants of q(x) and r(x), ), respectively. The cumulants
are expressed in terms of the moments using the Taylor series expansion of
the cumulant generating function, defined as Ψ(w) = logΦ(w).

For the special case of a zero-mean and unit-variance Gaussian distribution
as the reference pdf (denoted by G(x) below), expanding the series and col-
lecting the coefficients of same order derivatives together leads to the following
expression in terms of the Hermite polynomials and polynomial moments as
before.

q(x) = G(x)

∞∑

k=0

E[Hk(X)]

k!
Hk(x) (12)

The Hermite polynomials are obtained using the initial polynomials H0(x) =
1, H1(x) = x, and the recursion

Hk(x) = x Hk−1(x) − (k − 1)Hk−2(x) k ≥ 2 (13)

Expansion on Complete Bases: All pdfs (satisfying the usual continuity
and smoothness conditions) can be approximated by a truncated linear com-
bination of basis functions (preferably orthonormal). Given infinitely many
orthonormal bases {b1(x), b2(x), . . .}, it is possible to express an arbitrary pdf
in terms of the following linear combination.

q(x) =
∞∑

k=1

E[bk(X)]bk(x) (14)

An abundance of orthonormal bases for Hilbert spaces can be found in
the function approximation literature (the eigenfunctions of any reproducing
kernel forms a bases for the pdf space. A drawback of the series approximations
is that the truncation leads to pdf estimates that do not satisfy the two basic
conditions for a function to be a probability distribution: nonnegativity and
integration to unity [37].

2.3 Nonparametric Entropy Estimates

In the remainder of this chapter we will focus on nonparametric estimates, es-
pecially the following two that emerge naturally from plug-in entropy estima-
tion utilizing a variable-size kernel density estimate; namely, sample-spacing
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estimate and Parzen estimate. For illustration purposes, the former will be
presented for univariate entropy estimation and extensions to multidimen-
sional cases will be discussed.

The most straightforward nonparametric approach in entropy estimation,
usually leading to poor estimates, yet surprisingly utilized frequently in the, is
to consider a histogram approximation for the underlying distribution. Fixed-
bin histograms lack the flexibility of sliding histograms, where the windows
are placed on every sample. A generalization of sliding histograms is obtained
by relaxing the rectangular window and assuming smoother forms that are
continuous and differentiable (and preferably symmetric and unimodal) pdfs.
This generalization is referred to as kernel density estimation (KDE) and
is shown in (2). Another generalization of histograms is obtained by letting
the bin-size vary in accordance with local data distribution. In the case of
rectangular windows, this corresponds to nearest neighbor density estimation
[38], and for KDE this means variable kernel size [38, 39]. The corresponding
entropy estimates are presented below.

Entropy Estimation Based on Sample Spacing : Suppose that the ordered
samples {x1 < x2 < . . . < xN} drawn from q(x) are provided. We assume
that the distribution is piecewise constant in m-neighborhoods of samples
[31], leading to the following approximation:

p(x) = (N + 1)−1(xi+1 − xi), i = 0, . . . , N (15)

Denoting the corresponding empirical cdf by P (x), for ordered statistics, it is
known that

E[P (xi+m − P (xi))] =
m

N + m
, i = 1, . . . , N − m (16)

where the expectation is evaluated with respect to the joint data distribution
q(x1), . . . , q(xN ), assuming iid samples. Substituting this in entropy, we obtain
the m-spacing estimator as

H(x) ≈ − 1

N − m

N−m∑

i=1

log((N + 1)(xi+m − xi)/m) (17)

The spacing interval m is chosen to be a slower-than-linear increasing function
of N in order to guarantee asymptotic consistency and efficiency. Typically,
m = N1/2 is preferred in practice due to its simplicity, but other roots are
viable. A difficulty with the sample spacing approach is its generalization to
higher dimensionalities. Perhaps the most popular extension of sample-spacing
estimators to multidimensional random vectors is the one based on the mini-
mum spanning tree recently popularized in the signal processing community
by Hero [30]. This estimator relies on the fact that the integral in Renyi’s
definition [40] of entropy is related to the sum of the lengths of the edges in
the minimum spanning tree with useful asymptotic convergence guarantees.
One drawback of this approach is that it only applies to entropy orders of
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0 < α < 1 (Shannon entropy is the limiting case as a approaches 1). Another
drawback is that finding the minimum spanning tree itself is a computation-
ally cumbersome task that is also prone to local minima due to the heuristic
selection of a neighborhood search radius by the user in order to speed-up.

Another generalization of sample spacing estimates to multi-dimensional
entropy estimation has relied on the L1-norm as the distance measure be-
tween the samples instead of the usual Euclidean norm [39]. This technique
can, in principle, be generalized to arbitrary norm definitions. The drawback
of this method is its nondifferentiability, which renders it next to useless for
traditional iterative gradient-based adaptation, but could be useful for feature
ranking. This approach essentially corresponds to extending (15) to the mul-
tidimensional case as data-dependent variable-volume hyperrectangles. One
could easily make this latter approach differentiable through the use of smooth
kernels rather than rectangular volumes. Such modification will also form the
connection between the sample-spacing methods and kernel based methods
described next.

Parzen Windowing Based Entropy Estimation: Kernel density estimation
is a well-understood and useful nonparametric technique that can be employed
for entropy estimation in the plug-in estimation framework [33]. For a given set
of iid samples {x1, . . . ,xN} the variable size KDE is given in (2). To simplify
computational requirements, fized size isotropic kernels could be utilized by
assuming Σk = σ2I for all samples. The kernel function and its size can
be optimized in accordance with the ML principle [42, 43] or other rules-of-
thumb could be employed to obtain approximate optimal parameter selections
[41, 39]. Given a suitable kernel function and size, the corresponding plug-in
entropy estimate is easily obtained to be:

H(x) = − 1

N

N∑

j=1

log
1

N

N∑

i=1

KΣi
(xj − xi) (18)

Next, we demonstrate how these estimators can be utilized to design maxi-
mally discriminative linear and nonlinear feature projections via maximization
of mutual information based on nonparametric estimators.

3 Linear and Nonlinear Feature Projection Design via

Maximum Mutual Information

In this section we present two different techniques for determining linear and
nonlinear projections respectively. For finding optimal linear projections, in-
cluding feature selection, we will employ ICA decomposition in conjunction
with the m-spacing estimator given in (17). For determining optimal nonlin-
ear projections, we will employ the more general KDE-based plug-in estimate
given in (18). In both cases, we assume that independent and identically dis-
tributed (iid) training data of the form {(x1, c1), . . . , (xN , cN )}, where xi ∈ ℜn

is available.
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3.1 Linear Feature Projections

Given the training data, we seek to determine a maximally informative linear
feature projection y=Ax from n to m dimensions that is characterized by
a projection matrix A ∈ ℜm×n. Recently, methods based on optimizing this
matrix via direct maximization of an approximation to the mutual information
I(y, c) [14, 18]. These methods are based on slow iterative updates of the
matrix due to the fact that at every update the gradient or other suitable
update for the matrix must be computed using double-sum pairwise averages
of samples due to the form in (18) that arises from the plug-in formalism.
Stochastic gradient updates are a feasible tool to improve speed by reducing
the computational load at each iteration, yet they may still not be sufficiently
fast for very high dimensional scenarios.

We have recently proposed an approximation to this procedure by as-
suming that the class-mixture and class-conditional distributions of the given
features obey the linear-ICA generative statistical model. Under this assump-
tion, each class distribution as well as the mixture data density can be linearly
brought to a separable form consisting of independent feature coordinates.
This assumption is realistic for circularly symmetric class distributions, as
well as elliptically symmetric class distributions where the independent axes
of different classes are aligned, such that all classes can be separated into
independent components simultaneously. In other cases, the assumption will
fail and result in a biased estimate of the mutual information and therefore
the optimal projection.

Under the assumption of linear separability of class distributions (note
that this is not traditional linear separability of data points), we can ob-
tain an independent linearly transformed feature coordinate system: y=Wx,
where W is optimized using a suitable linear ICA algorithm on the training
data {x1, . . . ,xN} [21]. Under the assumption of overall and class-conditional
independence, the mutual information of y with c, can be decomposed into
the sum of mutual informations between each marginal of y and c:

I(y; c) ≈
n∑

d=1

I(yd; c) (19)

Each independent projection can now be ranked in terms of its individual con-
tribution to the total discriminative information by estimating I(yd; c). From
the training data, one obtains: yi = Wxi and the samples yd are{yd1, . . . ,ydN}.
Employing the m-spacing estimator in (17), we obtain:

H(yd) ≈ − 1
N−m

∑N−m
i=1 log((N + 1)(yd(i+m) − ydi)/m)

H(yd|c) ≈ − 1
Nc−mc

∑Nc−mc

i=1 log((Nc + 1)(yd(i+mc) − ydi)/mc)

I(yd; c) = H(yd) −
∑

c pcH(yd|c)
(20)

Suppose that the following ranking is obtained: I(y(1); c) > I(y(2); c) >
. . . > I(y(n); c). Then the rows of W corresponding to the top m marginals
y(1), . . . , y(m) are retained as the linear projection matrix.
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3.2 Feature Subset Selection

Consider the mixture density of the features: p(z) =
∑

c pcp(z|c). Assuming
that W and Wc are the linear ICA solutions (separation matrices) for p(z)
and p(z|c) respectively, let y=Wz and yc = Wc zc, where zc is a random
vector distributed according to p(z|c) and z is a random vector drawn from
p(z). It can be shown that the following identities hold:

H(z) =

m∑

d=1

H(yd) − log|W| − I(y) H(z|c) =

m∑

d=1

H(yc
d) − log‖Wc‖ − I(yc)

(21)
The residual mutual information due to imperfect ICA solutions are de-
noted by I(y) and I(yc). Under the assumption of linear separability (in
the ICA sense mentioned above rather than in the traditional meaning),
these residual mutual information terms will (be assumed to) become zero.
Since mutual information is decomposed into class-conditionals entropies as
I(z; c) = H(z) − ∑

c pcH(z|c), given linear ICA solutions W and Wc, we
obtain the following decomposition of mutual information:

I(z; c) =

m∑

d=1

(H(yd)−
∑

c

pcH(yc
d))+(log|W|−

∑

c

pclog|Wc|)+(I(y)−
∑

c

pcI(yc))

(22)
Given any subset of features selected from the components (marginals) of

x, the high-dimensional feature vectors that needs to be reduced by selection,
(22) can be utilized to estimate the mutual information of this subset, denoted
by z, with the class labels, by assuming that linear ICA solutions W and Wc is
obtained using a suitable algorithm [21] and the training samples correspond-
ing to each class (or the whole set). Further, the bias is assumed to be zero:
I(y) − ∑

c pcI(yc) = 0.3 The feature subset can be performed by evaluating
the mutual information between all possible subsets (there are 2n of them)
or utilizing a heuristic/greedy ranking algorithm to avoid the combinatorial
explosion of subsets to consider. For ranking, forward (additive), backward
(subtractive), or forward/backward strategies can be employed. In the purely
forward strategy we perform the following additive ranking iteration:

Initialization: Let the Unranked Feature Set (UFS) be {x1, . . . , xn} and
the Ranked Feature Set be empty. Ranking iterations: For d from 1 to n

perform the following. Let Candidate Set i (CSi) be the union of RFS and
xi, evaluate the MI I(CSi;C) between the features in the candidate set and
the class labels for every xi in UFS. Label the feature xi with the highest

3 Optionally, computational complexity can be further reduced by assuming that all
class-conditional and class mixture densities can be linearly separated by the same
ICA solution W, such that W = W(c) for all c. This additional assumption would
also eliminate need to include the correction terms depending on the separation
matrices.
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I(CSi,C) as x(d), redefine RFS as the union of RFS and x(d), and remove the
corresponding feature from UFS.

Alternatively, a purely backward strategy would iteratively remove the
least informative features from UFS and include in the RFS as the worst
features that should be eliminated. A better alternative to both approaches
is to initialize as above and allow both additive and subtractive (replacing)
operations to the RFS such that earlier ranking mistakes can be potentially
corrected at future iterations.

The main drawback of the linear ICA approach presented in these sections
is the high possibility of the feature distributions not following the main un-
derlying assumption of linear separability. To address this issue, linear ICA
can be replaced with nonlinear ICA, especially local linear ICA, which has
the flexibility of nonlinear ICA in modelling independent nonlinear coordi-
nates in a piecewise linear manner, and the simplicity of linear ICA in solving
for optimal separation solutions. The application of local linear ICA essen-
tially follows the same procedures, except the whole process is initialized by
a suitable partitioning of the data space using some vector quantization or
clustering algorithm (for instance k-means or mean shift clustering could be
utilized).

Due to the additivity of Shannon entropy, if the data space is partitioned
into P nonoverlapping bur complementary regions, the entropies and mutual
information become additive over these regions:

H(z) =
∑

p qpH(z(p))

H(z|c) =
∑

p qpH(z(p)|c)
I(z; c) =

∑
p qpI(z(p); c)

(23)

where qp is the probability mass of partition p (number of samples in
partition p divided by the total number of samples). Within each partition,
we still have I(z(p); c) = H(z(p))−∑

c qpcH(z(p)|c), thus (21) and (22) can be
employed on each partition separately and summed up to determine the total
mutual information.

3.3 Smooth Nonlinear Feature Projections

In order to derive a nonparametric nonlinear feature projection, consider the
following equivalent definition of Shannon’s mutual information and the KDE
plug-in estimate with some positive semidefinite kernel K (.):

IS(z; c) =
∑

c

pcEz|c

[
log

pz|c(z|c)
pz(z)

]
≈

∑

c

pc

Nc

Nc∑

j=1

log
(1/Nc)

∑N
i=1 K(zc

j − zc
i )

(1/Nc)
∑N

i=1 K(zc
j − zi)

(24)
where z1, . . . , zN is the training set and its subset corresponding to class c is
zc
1, . . . , z

c
N . According to the theory of reproducing kernels for Hilbert spaces
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(RKHS), the eigenfunctions ϕ1(z), ϕ2(z), . . . collected in vector notation as
ϕ(z), of a kernel function K that satisfy the Mercer conditions [44] form a
basis for the Hilbert space of square-integrable continuous and differentiable
nonlinear functions [45, 46]. Therefore, every smooth nonlinear transformation
gd(x) in this Hilbert space can be expressed as a linear combination of these
bases:

yd = gd(z) = vT
d ϕ(z) (25)

where yd is the dth component of the projection vector y. For a symmetric
positive semidefinite, translation invariant, and nonnegative (since we will
establish a connection to KDE) kernel, we can write

K(z − z′) =

∞∑

k=1

λkϕk(z)ϕk(z′) = ϕT (z)ΛϕT (z′) ≥ 0 (26)

Notice that for a nonnegative kernel, kernel induced feature space (KIFS)
defined by the ϕ(z) transformation maps all the data points into the same half
of this hyper-sphere; i.e., the angles between all transformed data pairs are
less than p radians. This is a crucial observation for the proper geometrical
interpretation of what follows. substituting (26) into (24), we get:

IS(z; c) ≈
∑

c

pc

Nc

Nc∑

j=1

log

[
NϕT (zc

j)ΛΦzmc

NϕT (zc
j)ΛΦz1

]
(27)

where mci = 1 if ci = c, 0 otherwise, 1 is the vector of ones, N = N1 +
. . . + NC , and pc = Nc/N . The matrix Φz = [ϕ(z1) · · ·ϕ(zN )]. The class-
average vectors in the KIFS are µc = (1/Nc)Φzmc and for the whole data it
is µ = (1/Nc)Φz1. Substituting these:

IS(z; c) ≈
∑

c

pc

Nc

Nc∑

j=1

log

[
NϕT (zc

j)Λµ

NϕT (zc
j)Λµ

]
(28)

Consider a projection dimensionality of m; we have y = VT ϕ(x), where
V = [v1, . . . ,vm] consists of orthonormal columns vd. Note that the orthonor-
mality constraint of any linear projection is reasonable because any full rank
linear transformation can be written as the product of an orthonormal matrix
times an invertible arbitrary linear transformation (due to the existence of
singular value decomposition with nonzero eigenvalues). The arbitrary trans-
formation does not change the information content of the projection, thus can
be omitted. The back-projection of y to the KIFS is

ϕ̃(z) = VVT ϕ(z) (29)

The eigenfunctions of the kernel are not explicitly known in practice typi-
cally, therefore, we employ the common Nystrom approximation [47], ϕ(z) ≈
ϕ(z) =

√
NΛ−1Φzk(z), where k(z) = [K(z − z1), . . . ,K(z − zN )]T and the
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eigendecomposition K = ΦT
zΛΦz of the data affinity matrix whose entries are

Kij = K(zi−zj) provide the other necessary terms. Combining (29) with this
approximation and substituting in (28) leads to the following cost function
that needs to be maximized by optimizing an orthonormal V ∈ ℜN×m:

J(V) =
∑

c

pc

Nc

Nc∑

j=1

log

[
ϕT (xj)VVT ΛVVT µc

ϕT (xj)VVT ΛVVT µ

]
(30)

where µc = (1/Nc)Φzmc and µ = (1/N)Φz1 are the class and overall
mean vectors of the data in the Φ-space. Note that µ = p1µ1 + . . . + pCµC

and with the approximation, we have y = VT ϕ(x).
By observation, (30) is seen to be maximized by any orthonormal matrix

V whose columns span the intersection of the subspace orthogonal to µ and
span(µ1,µ2, . . . ,µC) [48]. This also points out the fact that any projection
that leads to a reduced dimensionality of more than C-1, where C is the num-
ber of classes, is redundant. It is also possible to find the analytical solution
for the optimal projection to C-1 dimensions or less. Let M = [µ1 . . . µC ],
note that MT M = P−1 with p = [p1, . . . ,pC ] and P = diag(p). We observe
that µ = Mp is unit-norm and

V = M − µ(µT M) = M − µ(pT MT M) = M − µ1T (31)

for a C-1 dimensional projection. For lower dimensional projections, deflation
can be utilized and the procedure can be found in [48].

Special case of 2-classes: We illustrate the analytical solution for the case
of projection to a single dimension in the case of two classes. We parameterize
the projection vector as v = MP−1/2α, where αT α = 1 (so that vT v = 1). It

can be found that the optimal solution is provided by α = [−p
1/2
2 , p

1/2
1 ]T (and

its negative yields a projection equivalent in discriminability where the two
class projections are flipped in sign). For the projection, the natural threshold
is zero since the data mean is projected to this point (due to the fact that v
is orthogonal to µ).

4 Experimental Evaluation and Comparisons

In this section, we present the experimental evaluation for the methods ex-
plained above and we also provide comparison with LDA and kernel LDA. The
first example is an illustrative toy example, and the preceding two experiments
are challenging problems performed on real data.

4.1 Synthetic Dataset

This dataset consists of four features: xi i = 1, . . . , 4, where x1 and x2 are
nonlinearly related, x3 and x4 are independent from the first two features and
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are linearly correlated Gaussian-distributed with different mean and variance.
There are two classes in this dataset represented with different markers in
Figure 1a and 1b. Forming an almost separable distribution with a nonlinear
separation boundary in the x1 and x2 plane, and overlapping in the x3 and
x4 plane, this dataset forms a good example to compare linear and nonlinear
methods.
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(a) x1 vs x2
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(b) x3 vs x4

Fig. 1. The synthetic dataset

For ICA feature projection and selection, we use Support Vector Machine
(SVM) to classify them. For the SVM, we use Chang and Lin’s library tool-
box. Based on the experiment results, we select the parameter of SVM as:
penalty parameter c=10, and kernel size g=10. We apply ICA-MI feature
projection and ICA-MI feature selection, nonlinear MI projection methods on
the dataset, as well as LDA and kernel LDA. Each class contains 500 samples
and we divide the dataset into five equal parts, four of which are used as
training simples, one of which is used as testing samples. Figure 2a shows the
classification accuracy vs. number of n best features, the Figure 2b presents
a comparison of five above mentioned methods. To present a fair comparison,
while comparing with other methods, we consider one dimensional projections
for ICA based methods.

4.2 Brain Computer Interface Dataset

In this experiment, we apply the same five methods on Brain Computer In-
terfaces Competition III dataset V. This dataset contains human brain EEG
data from 3 subjects during 4 non-feedback sessions. The subject is sitting on
a chair, relaxed arms resting on their legs and executed one of the three tasks:
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Fig. 2. The performance evaluation on synthetic dataset

imagination of left hand movements; imagination of right hand movements;
generation of words beginning with the same random letter. The EEG data
were collected during the sessions. The data of all 4 sessions of a given sub-
ject were collected on the same day, each lasting 4 minutes with 5-10 minutes
breaks in between. We want to classify one of the three tasks from the EEG
data. The raw EEG data contains 32 channels at 512 Hz sampling rate. The
raw EEG potentials were first spatially filtered by means of a surface Lapla-
cian. Then, every 62.5 ms, the power spectral density (PSD) in the band 8-30
Hz was estimated over the last second of data with a frequency resolution of
2 Hz for the 8 centro-parietal channels C3, Cz, C4, CP1, CP2, P3, Pz, and
P4. As a result, an EEG sample is a 96-dimensional vector (8 channels times
12 frequency components).

To be able to present the results in a ROC curve we only use the first
the classes in the dataset. We also mix the data from all sessions together,
then and use five-fold cross validation as in the previous experiment. The
classification performance vs. number of selected features, and comparison of
one dimensional projections by different methods are presented in Figure 3a,
and 3b, respectively.

4.3 Sonar Mine Detection

The mine detection dataset consists of sonar signals bounced off either a metal
cylinder or a roughly cylindrical rock. Each sonar reflection is represented by
a 60-dimensional vector, where each dimension represents the energy that
falls within a particular energy band, integrated over a certain period of time.
There are 208 60-dimensional sonar signals in this dataset, 111 of them belongs
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Fig. 3. The performance evaluation on BCI dataset

to mines and 97 of them obtained by bouncing sonar signals from cylindrical
rocks under similar conditions. These sonar signals are collected from a variety
of different aspect angles, and this dataset was originally used by Gorman
and Sejnowski in their study of sonar signal classification [49]. The dataset is
available in UCI machine learning repository [50].

As in the previous experiments, here we compare five different methods: MI
Projections, ICA feature selection, ICA feature projection, LDA, and Kernel
LDA. As in the previous experiments, for all these methods, we present the
results of five-fold cross validation, where the class a priori probabilities in
the bins are selected according to the a priori probabilities in the dataset.
The results for projections into a single dimension is presented with a ROC
curve, whereas the performance increase of the ICA based linear methods for
different dimensions are presented separately. Due to the nonlinear structure
of the optimal class separation boundary, nonlinear methods show superior
performance in this experiment. Figure 4a presents the performance of ICA
based methods for different number of dimensions, and a comparison of one
dimensional projections with all five methods is presented in Figure 4b.

5 Conclusions

We presented and compared several information theoretic feature selection an
projection methods. Selection and projection methods based on ICA are either
linear or locally linear methods, which are simply analyzable. As seen from the
original feature space, the mutual information projection method is nonlinear
and not easy to analyze. Although it is hard in the original input space,
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Fig. 4. The performance evaluation on sonar mine detection dataset

this method is also simple to analyze in the KIFS, where the MI projection
becomes a linear method with the use of kernel trick.

MI projection method also provided similar -sometimes slightly better-
performance as compared to widely used KLDA method. At this point, note
that KLDA is known to be numerically unstable if there are not enough data
points, and MI projection method provides same/better performance with an
analytical solution. Among the information theoretic methods presented here,
MI projection methods provided the best performance, and it also does not
suffer from the input data dimensionality, whereas methods based on ICA
transformation severely lose accuracy with increasing input dimensionality in
the estimation of the inverse mixing matrix.

6 Acknowledgements

This work is partially supported by NSF grants ECS-0524835, and ECS-
0622239.

References

1. Duch W, Wieczorek T, Biesiada J, Blachnik M (2004) Comparison of feature
ranking methods based on information entropy, Proc. of International Joint
Conference on Neural Networks, 1415–1420

2. Erdogmus D, Principe J C (2004) Lower and Upper Bounds for Misclassification
Probability Based on Renyi’s Information, Journal of VLSI Signal Processing
Systems, 37:305–317



20 Deniz Erdogmus, Umut Ozertem and Tian Lan

3. Fano R M (1961) Transmission of Information: A Statistical Theory of Com-
munications. Wiley, New York

4. Hellman M E, Raviv J, (1970) Probability of Error, Equivocation and the Cher-
noff Bound, IEEE Transactions on Information Theory, 16:368–372

5. Koller D, Sahami M (1996) Toward Optimal Feature Selection, Proceedings of
the International Conference on Machine Learning, 284–292

6. Battiti R (1994) Using Mutual Information for Selecting Features in Supervised
Neural Net Learning, Neural Networks, 5:537–550

7. Bonnlander B V, Weigend A S (1994) Selecting Input Variables Using Mutual
Information and Nonparametric Density Estimation, Proceedings of Interna-
tional Symposium on Artificial Neural Networks, 42–50

8. Yang H, Moody J (2000) Data Visualization and Feature Selection: New Al-
gorithms for Nongaussian Data, Advances in Neural Information Processing
Systems, 687–693

9. Oja E (1983) Subspace Methods of Pattern Recognition, Wiley, New York
10. Devijver P A, Kittler J (1982), Pattern Recognition: A Statistical Approach,

Prentice Hall, London
11. Fukunaga K, (1990) Introduction to Statistical Pattern Recognition, Academic

Press, New York
12. Everson R, Roberts S (2003) Independent Component Analysis: A

Flexible Nonlinearity and Decorrelating Manifold Approach, Neural
Computation,11:1957–1983

13. Hyvrinen A, Oja E, Hoyer P, Hurri J (1998) Image Feature Extraction by Sparse
coding and Independent Component Analysis, Proceedings of ICPR, 1268–1273

14. Torkkola K, (2003) Feature Extraction by Non-Parametric Mutual Information
Maximization, Journal of Machine Learning Research, 3:1415–1438

15. Battiti R, (1994) Using Mutual Information for Selecting Features in Supervised
Neural Net Training, IEEE Transaction Neural Networks, 5:537–550

16. Kira K, Rendell L. (1992) The feature selection problem: Traditional methods
and a new algorithm, Proceedings of Conference on Artificial Intelligence, 129–
134

17. John G H, Kohavi R, Pfleger K, (1994) Irrelevant features and the subset
selection problem, Proceedings of Conference on Machine Learning, 121–129

18. Hild II K E, Erdogmus D, Torkkola K, Principe J C (2006) Feature Extraction
Using Information-Theoretic Learning, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28:1385–1392

19. Guyon I, Elisseeff A (2000) An Introduction to Variable and Feature Selection,
Journal of Machine Learning Research (Special Issue on Variable and Feature
Selection)

20. Scholkopf B, Smola A, Muller K R (1998) Nonlinear Component Analysis as a
Kernel Eigenvalue Problem, Neural Computation, 10:1299–1319

21. Hyvarinen A, Karhunen J, Oja E (2001) Independent Component Analysis,
Wiley

22. Lee D D, Seung H S (1999) Learning the parts of objects by non-negative matrix
factorization, Nature 401, 788–791

23. Roweis S, Saul L, (2000) Nonlinear dimensionality reduction by locally linear
embedding, Science,290:2323–2326

24. Costa J, Hero A O (2005) Classification constrained dimensionality reduction,
Proceedings of ICASSP, 5:1077–1080



Information Theoretic Feature Selection and Projection 21

25. Baudat G, Anouar F (2000) Generalized Discriminant Analysis Using a Kernel
Approach, Neural Computation, 12:2385–2404

26. Principe J C, Fisher J W, Xu D, (2000) Information Theoretic Learning, Un-
supervised Adaptive Filtering, S. Haykin Editor, Wiley, New York, 265–319

27. Parzen E (1967) On Estimation of a Probability Density Function and Mode,
Time Series Analysis Papers, Holden-Day, Inc., San Diego, California

28. Erdogmus D, (2002) Information Theoretic Learning: Renyi’s Entropy and its
Applications to Adaptive System Training, PhD Dissertation, University of
Florida, Gainesville, Florida

29. Kraskov A, Stoegbauer H, Grassberger P (2004) Estimating Mutual Informa-
tion, Physical Review E, 69:066138

30. Learned-Miller E G, Fisher J W (2003) ICA Using Spacings Estimates of En-
tropy, Journal of Machine Learning Research,4:1271–1295

31. Vasicek O, (1976) A Test for Normality Based on Sample Entropy, Journal of
the Royal Statistical Society B,38:54–59

32. Hero A O, Ma B, Michel O J J, Gorman J (2002) Applications of Entropic
Spanning Graphs, IEEE Signal Processing Magazine, 19:85–95

33. Beirlant J, Dudewicz E J, Gyorfi L, Van Der Meulen E C (1997) Nonparametric
Entropy Estimation: An Overview, International Journal of Mathematical and
Statistical Sciences, 6:17-39

34. Erdogmus D, Principe J C (2002) An Error-Entropy Minimization Algorithm
for Supervised Training of Nonlinear Adaptive Systems, IEEE Transactions on
Signal Processing, 50:1780–1786

35. Erdogmus D, Principe J C (2006) From Linear Adaptive Filtering to Nonlinear
Information Processing, to appear in IEEE Signal Processing Magazine

36. Erdogmus D, Hild II K E, Rao Y N, Principe J C (2004) Minimax Mutual Infor-
mation Approach for Independent Components Analysis, Neural Computation,
16:1235–1252

37. Girolami M, Orthogonal Series Density Estimation and the Kernel Eigenvalue
Problem, Neural Computation, MIT Press, 14:669–688

38. Duda R O, Hart P E, Stork D G (2000) Pattern Classification, 2nd ed., Wiley
39. Devroye L, Lugosi G (2001) Combinatorial Methods in Density Estimation,

Springer, New York
40. Renyi A (1970) Probability Theory, North-Holland, Amsterdam
41. Silverman B W, (1986) Density Estimation for Statistics and Data Analysis,

Chapman and Hall, London
42. Duin R P W (1976) On the Choice of the Smoothing Parameters for Parzen

Estimators of Probability Density Functions, IEEE Transactions on Computers,
25:1175–1179

43. Schraudolph N (2004) Gradient-Based Manipulation of Nonparametric Entropy
Estimates, IEEE Transactions on Neural Networks, 15:828–837

44. Mercer J (1909) Functions of Positive and Negative Type, and Their Con-
nection with the Theory of Integral Equations, Transactions of the London
Philosophical Society A, 209:415–446

45. Wahba G (1990) Spline Models for Observational Data, SIAM, Philedelphia,
Pennsylvania

46. Weinert H (ed.) (1982) Reproducing Kernel Hilbert Spaces: Applications in
Statistical Signal Processing, Hutchinson Ross Pub. Co., Stroudsburg, Penn-
sylvania



22 Deniz Erdogmus, Umut Ozertem and Tian Lan

47. Fowlkes C, Belongie S, Chung F, Malik J (2004) Spectral Grouping Using the
Nystrom Method, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 23:298–305

48. Ozertem U, Erdogmus D, Jenssen R (2006) Spectral Feature Projections That
Maximize Shannon Mutual Information with Class Labels, Pattern Recogni-
tion, 39:1241–1252

49. Gorman R. P., Sejnowski T. J. (1988) Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets, Neural Networks 1:75–79

50. http://www.ics.uci.edu/ mlearn/MLRepository.html


