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Abstract An increased interest in autonomous swarms and their applications has moti-
vated research in a variety of directions. The possible applications for intelligent
self-organizing agents range from military to humanitarian. An important de-
sired feature of self-organizing multiple agents is decentralized decision making
for fault-tolerant mission accomplishment capability. In this paper, we propose
a principled decentralized organization approach that roots from the concept of
information theoretic particle interactions. As an example, the problem of self-
organizing a set of multiple agents uniformly over a circular region in a two
dimensional space. In addition, variations to the proposed approach will be
demonstrated for target tracking and obstacle avoiding tasks.

1. Introduction
The idea of swarm intelligence is biologically inspired by the collective be-

haviour of insect societies, which produce complex cooperative activities [13,
19]. Swarms found applications in versatile fields including oceanographic
sampling [23], communication networks [25], material transportation in haz-
ardous zones [9], and planetary missions [14].

Leader-follower based self-organization strategy had been investigated by
many researchers. However, in many applications, this scheme is not desirable
due to the possibility of a system failure in the case of a malfunctioning leader.
Decentralized control is essential and vital to swarms operating in such scenar-
ios, since it introduces robustness to the system. Some reasons for preferring
decentralized approaches include fault-tolerant operation even when some of
the agents fail, reduced communication and calculation load for the agents,
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especially for the to be leader, and reduced design complexity for the leader
agent, as well as uniform design specifications for easy production and system
up scaling.

In this paper, we propose a decentralized self-organization approach based
on information theoretic interactions between the particles, i.e., the agents in
the swarm. In this approach, we form an analogy between the interaction rule
between the agents and the physical forces due to the gradient of a potential
field in physics. This is the motivation behind calling the agents in the swarm
as particles in a potential field. Specifically, since the potential field in the
analogy is related to the information theoretic concept of entropy, this field
is named as the information potential, thus its gradient in space becomes the
information force. The notions of information potential and information forces
were first introduced by Principeet al. [17] in the context of filter adaptation.
In this application to the self-organization of swarms, we assume that each
agent need not know its own absolute position as well as the positions of the
other agents.

The roots of information theory go back to the seminal work of Shannon
(1948). Originally, Shannon was determined to address the quantification of
information flow through digital communication channels and understanding
the limitations imposed by the representations used for transmitting data. In
the following decades, information theory not only influenced greatly the area
of communication engineering [21, 8], but it has evolved to be mathemati-
cal theory itself [6, 5], which has had tremendous impact on many areas of
science and engineering, including biology [26], physics [12], and signal pro-
cessing [11, 3]. In general, the mathematical information theory deals with
the statistical implications of the associated definitions, such as entropy and
mutual information [5]. In addition, the question of geometric structures lying
under statistical function spaces and their implications on learning and adap-
tive systems has been a focal point of contemporary research in the field [1].

In this paper, we are specifically interested in the problem of uniformly
distributing the agents over a region, selected to be circular in this case. The
ideas presented here could be modified to accommodate the application of the
principles to the uniform distribution of them to other forms. It is well known
in information theory that the distribution that maximizes entropy, defined as
the average information or uncertainty, under the constraint of bounded finite
support is uniform. Therefore, it is possible to achieve the task of uniformly
distributing the agents over a circular region by maximizing the entropy of
the particles. Entropy, however, is a function of the continuous distribution
function, which needs to be defined smoothly over the region. In this situation,
the agents act as samples from a random variable distribution
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2. Background on Information Theory
Although information is a relatively simple concept to conceive, its mathe-

matical representation and associated properties had started to be formulated
with the groundbreaking work of Shannon (1948). Although the information
that a random event provides had been defined before as log(1/p), wherep is
the probability of that event occurring, Shannon was the first to define and uti-
lize exclusively the quantity called average information or entropy. Given a set
of random events with probabilities{pi}, i=1,. . . ,N the average information
of these events is given by

HS({pi}) = −
N∑

i=1

pi log pi (1)

Although by definition this quantity is the expected value of the information
over the set of events under consideration, its reducing when the probability
mass function (pmf){pi} approaches aδ-distribution and increasing when it
approaches a uniform distribution creates an analogy with the entropy concept
in physics, leading to the name entropy. It is therefore, also a measure of the
uncertainty about the value of the random variable that has this probability dis-
tribution. For continuous random variables, the definition of entropy is easily
extended. In that case, the differential entropy of a random variableX with
probability density function (pdf)fX (.) becomes

HS(X) = −
∞∫

−∞
fX(x) log fX(x)dx (2)

The differential entropy is minimized when the pdf approaches to aδ-train
type distribution and is maximized for a uniform density under the finite bounded
support constraint [5].

An alternative entropy definition is introduced by Renyi after relaxing some
assumptions that the entropy needs to satisfy. Renyi’s order-α entropy forX
is defined as follows [18].

Hα(X) =
1

1− α
log

∞∫

−∞
fα

X(x)dx (3)

Shannon’s entropy is a special case of Renyi’s definition corresponding to
α=1. In addition, the minimum and maximum of any order entropy appear at
the same pdfs as in Shannon’s entropy described above. In this paper, we are
specifically interested in the maximization of entropy under the finite bounded
support constraint, since our objective is to distribute the agents (samples) uni-
formly over the selected region.
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3. Nonparametric Estimation of Renyi’s Entropy
Estimating the entropy of a random variable requires the knowledge of the

underlying pdf. In general, only a finite number of samples are available and
the analytical expression for the pdf is unknown. Therefore, we resort to non-
parametric estimation methods. First, one needs to obtain an estimate of the
pdf. Once this estimate is obtained, it can be plugged in the entropy definition
to evaluate the entropy of the random variable whose samples are provided.
This approach is referred to as the plug-in estimation method in the entropy
estimation literature [2]. One pdf estimation method is particularly useful in
the case of estimating Renyi’s entropy. Parzen windowing allows the smooth-
ing of the empirical sample distribution through the incorporation of kernels.
Suppose we are givenN samples{xi}, i=1,. . . ,N of the random variableX
and the kernel function to be used in the Parzen pdf estimate isκσ(·). The ker-
nel function must be a valid pdf and it is required to be a smooth, continuous
and differentiable function for our purposes. Gaussian density is perhaps the
most popular choice. The rectangular density (uniform) is also interesting as it
corresponds to the sliding histogram density estimation method. Under these
circumstances, the estimated pdf ofX is [16]

f̂X(x) =
1
N

N∑

i=1

κσ(x− xi) (4)

In the case of multidimensional random vectors, the kernel function needs to
be multidimensional. This joint kernel is required to be the product of single-
dimensional kernels. Specifically, if the samples aren dimensional, then the
joint kernel to be used for joint density estimation must be evaluated by

κΣ(x) =
n∏

o=1

κσo(x
o) (5)

whereκσo(·) is the single-dimensional kernel function for theoth dimension.
In the kernel notation, the subscriptσ denotes the kernel size or the window
length. For example, in the case of Gaussian kernels, the kernel size is usually
controlled by the standard deviation.

Now, consider the quadratic entropy from Renyi’s family. Forα=2, the
argument of the log is defined as the (quadratic) information potential. The
information potential can be estimated nonparametrically from the samples
of X using Parzen windowing with Gaussian samples. Substituting this pdf
estimate in the definition, we get
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V̂2(X) =
∞∫
−∞

f̂2
X(x)dx =

∞∫
−∞

(
1
N

N∑
i=1

Gσ(x− xi)
)2

dx

= 1
N2

∞∫
−∞

(
N∑

i=1
Gσ(x− xi)

) (
N∑

j=1
Gσ(x− xj)

)
dx

= 1
N2

N∑
j=1

N∑
i=1

∞∫
−∞

Gσ(x− xj)Gσ(x− xi)dx

= 1
N2

N∑
j=1

N∑
i=1

Gσ
√

2(xj − xi)

(6)

The important point here is that, in this estimator for Renyi’s quadratic en-
tropy, there are no approximations apart from the explicit Parzen window ap-
plication. In addition, the shape of the kernel is preserved during the integra-
tion process. If, in addition to the Parzen pdf estimate, also the sample mean
approximation is introduced, then it becomes possible to nonparametrically es-
timate any order entropy using any suitable kernel function. This is achieved
by the equivalent definition of entropy given as an expectation.

Hα(X) =
1

1− α
log EX

[
fα−1

X (X)
]

(7)

Specifically, for entropy orderα and kernel functionκσ(.) the plug-in esti-
mator becomes [7]

Hα(X) ≈ 1
1− α

log
1

Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi)

)α−1

(8)

Notice in (6) and (8) that the entropy estimate relies on the pair-wise interac-
tions between the samples through the kernel function. Particularly, the kernel
function could be regarded as a potential field emanating from the samples to
form the total information potential experienced by other samples. For exam-
ple, in (6), the summation over the indexi could be conceived as the superpo-
sition of information potential contributions of all other samples to samplej.
The summation overj can then be understood as the summation of the poten-
tials of all the particles to determine the overall particle-system potential [17].

4. Information Particles
The information particle interaction idea has been recently introduced [17]

and has been successfully utilized in many problems including independent
component analysis, nonlinear principal components analysis, and SAR im-
age feature extraction. The principle was generalized into a general particle
interaction framework [7], which encompasses the original information par-
ticle interaction model for adaptation and self-organization as a special case
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corresponding to a specific choice of the particle potential functions. In this
section, we will briefly describe the general particle interaction model for self-
organization.

Now, suppose that the sample values{x1,. . . ,xN}, correspond to the particle
position coordinate vectors in the current analogy. For simplicity, assume we
are dealing with a single dimensional space (extension to multi-variable case is
trivial). We assume that each particle emanates a potential field. If the potential
field that is generated by each particle isv(ξ), we require this function to be
continuous and differentiable (except possibly at the origin), and to satisfy the
even symmetry conditionv(ξ) = v(−ξ); in the multidimensional case, this
condition can be changed to become a circular symmetry constraint. With
these definitions, we observe that the potential of particlexj due to particle
xi is V (xj |xi) = v(xj − xi). The total potential energy ofxj due to all the
particles is then given by

V (xj) =
N∑

i=1,i6=j

V (xj |xi) =
N∑

i=1,i6=j

v(xj − xi) (9)

With analogy to physics, the information force, or the particle interaction
force in general, is defined as the gradient of this potential with respect to the
particle position (i.e., its value). For particlej, the interaction force due to the
potential field emanating from particlei is obtained as

F (xj |xi) =
∂V (xj |xi)

∂xj
=

∂v(ξ)
∂ξ

∣∣∣∣
ξ=(xj−xi)

= v′(xj − xi) (10)

from which the total force acting on particlej is found to be

F (xj) =
N∑

i=1,i 6=j

F (xj |xi) =
N∑

i=1,i6=j

v′(xj − xi) (11)

We have assumed that the force applied to a particle by itself is zero by
definition. In the case of information potential as defined in (6) or (8), the
self-force of a particle is automatically zero, due to the derivative of the kernel
function being zero at the origin. In other potential definitions, which might as
well be discontinuous at the origin (such as the gravitational field), the force
can be defined to be zero at zero distance. Some interesting special cases of
particle interaction potentials include the following:

Lp-Norm Type Potential: Consider, for example, the potential function choice
of v(ξ) = ξ2/(2N2). Then, upon direct substitution of this in (9), and sum-
ming these potentials over all particles (which means a summation overj), we
obtain the total potential of the particle set as the sample variance. In general,
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for potential functions of the formv(ξ) = |ξp|, wherep > 1, the total potential
becomes

V (x) =
N∑

j=1

N∑

i=1

|(xj − xi)p| (12)

which is related to the absolute central moments of the particle distribution.
Each value ofp corresponds to a different choice of the distance metric be-
tween the particles from the family of Minkowski norms.

Information Potential: As we have seen in (6), the quadratic information
potential corresponds to the choice of Gaussian potential functions. In general,
any pdf could be used, leading to more general quadratic-entropy-related par-
ticle interaction laws. For non-quadratic-entropy-based interaction laws, the
information potential must be defined in consistency with the entropy estima-
tor in (8). In this case, the information force acting on particlej could be
written in the following form.

Fα(xj) = α−1
Nα

(
N∑

i=1
κσ(xj − xi)

)α−2 (
N∑

i=1
κ′σ(xj − xi)

)

= (α− 1)fα−2
X (xj)

(
1

N2

N∑
i=1

κ′σ(xj − xi)
)

= (α− 1)f̂α−2
X (xj)F2(xj)

(13)

This reveals the interesting fact that order-α information force is directly re-
lated to the quadratic information force, the difference being the scaling factor
based on the estimated probability density of particlej. Therefore, it is pos-
sible to manipulate how particles in dense and sparse regions of the particle
set experience information forces by selecting the entropy order properly. In
particular, selectingα > 2 will emphasize the forces experienced by particles
in dense regions, whereas it will deemphasize the forces acting on the particles
in sparse regions. Similarly, forα < 2, the forces acting on particles in the
sparse regions will be boosted, while the forces on particles in dense regions is
reduced.

Inverse-Distance-Squared Potential: This type of potential law is relatively
easy to implement using the natural physical behavior of electromagnetic sig-
nal intensity. For this interaction law, the potential function is simplyv(ξ) =
A/ξ2. Since this potential is not defined at the origin, the force at zero dis-
tance must be set to zero by definition. The behavior of particles under this
interaction law will be similar to the motion of particles under gravitational or
electrical charge influence.
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5. Self-Organization of Multiple Agents Using
Particle Interaction Principles

The application of the particle interaction principles outlined in the preced-
ing sections is quite straightforward. In the multiple-agent setup, we consider
each agent (robot) to be a particle and the main task under consideration in
this paper is to distribute the agents uniformly over a circular region in two-
dimensional space. The circular regions commonly used in self-organizing
swarm case studies. For example, Unsal and Bay use a quite restrictive algo-
rithm that spreads the robots uniformly over a circular region, which requires
all the robots to know the absolute positions of every robot [24].

In the entropy maximization scheme that is being presented in this paper,
spreading of the robots must be counter-acted by a controlling force at the
boundary of the desired circular region. Otherwise, the repulsive forces that
the robots exert on each other will lead to unbounded spreading of the parti-
cles. This can be achieved by comparing the total potential that is measured
by a robot with a predetermined threshold, which is a function of the potential
function selected, number of robots, and the desired radius. The determination
of an analytical function for this threshold is a daunting task. It requires solv-
ing a complicated optimization problem similar to sphere packing [4], yet it is
different in the sense that the radii of thespheres(which is analogous to the
interaction radius of each particle at the balance point) need not be equal, nor
they are knowna priori.

Suppose that the potential function generated by each robot isv(ξ), whereξ
is the distance to the particle. Then, the potential on robotj due to roboti is
simply v(pj−pi). The overall potential of particlej due to the superposition
of all potentials from all the other robots is given by

Vj(p1, ...,pN ) =
N∑

i=1,i6=j

v(pj − pi) (14)

The interaction force on this particle, also taking into account the direction
of the force based on the threshold comparison, is therefore,

Fj(p1, ...,pN ) = sign(γ − Vj(p1, ...,pN ))∂Vj(p1,...,pN )
∂pj

=

= sign(γ − Vj(p1, ...,pN ))
N∑

i=1,i6=j

∂v(pj−pi)
∂pj

(15)

Since thesign function will create a bang-bang type control action, for
smoother dynamics, it can be approximated by a sigmoid function, such as
arctan, in practice. This will reduce unnecessary control actuator fluctuations.
If these forces are assumed to be the velocity commands for the robots, then
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the overall collective behavior of the particles can be summarized with the fol-
lowing differential equation, wherėp denotes differentiation with respect to
time.




ṗ1
...
ṗj
...
ṗN




=




F1(p1, ...,pN )
...
Fj(p1, ...,pN )
...
FN (p1, ...,pN )




(16)

Clearly, this control algorithm is designed to guarantee stable convergence
to a stationary configuration of the robots in the circular region. This is guar-
anteed by the repulsive interactions between the particles and the threshold
switching of the control command direction. Nevertheless, there are more than
one stationary solutions of the dynamical system given in (16). LetF (p) de-
note the right hand side of (16), wherep=[p1,. . . ,pN ] is the concatenated posi-
tion vector. The stationary points of (16) are given by the solutions ofF (p)=0,
which is extremely difficult. The local (linearized) stability of these stationary
solutions are controlled by the Jacobian matrix

∂F (p)
∂p

=




∂F1(p)/∂p1 · · · ∂F1(p)/∂pN
...

...
...

∂FN (p)/∂p1 · · · ∂FN (p)/∂pN


 (17)

In (17), the Jacobian matrix is written in block form, where each of the
block entries∂Fj(p)/∂pi is the Jacobian of each individual force vector with
respect to its own particle. These block entries satisfy an interesting structural
identity. Notice that the diagonal blocks are easily obtained as (assuming that
thearctansmoothing function replacessign)

∂Fj(p)
∂pj

= −1
[1+(γ−Vj(p))2]

∂Vj(p)
∂pj

∂Vj(p)
∂pj

T
+ arctan(γ − Vj(p))∂2Vj(p)

∂p2
j

∂Fj(p)
∂pi

= −1
[1+(γ−Vi(p))2]

∂Vj(p)
∂pi

∂Vj(p)
∂pj

T
+ arctan(γ − Vj(p))∂2Vj(p)

∂pi∂pj

(18)

However, due to the identities

∂Vj(p)
∂pi

= −∂Vj(p)
∂pj

∂2Vj(p)
∂pi∂pj

= −∂2Vj(p)
∂p2

j

(19)

the off-diagonal blocks of the Jacobian matrix become

∂Fj(p)
∂pi

= −∂Fj(p)
∂pj

(20)
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Figure 1.1. Empirical estimation and approximation of threshold

For local stability of the stationary points, the eigenvalues of the Jacobian
matrix in (17) must have negative eigenvalues when evaluated at the point of
interest.

In addition, the information potential of each robot readily provides a Lya-
punov energy function that demonstrates asymptotic stability. Specifically, if
we let{τ j}, j=1,. . . ,N denote the information potentials of the robots at a par-
ticular stationary solutionp∗, then the following will be a Lyapunov function.

V =
N∑

j=1

|Vj(p)− τj | (21)

An important point to mention at this point is that, the particle interaction
model that is presented here requires each robot to know only the total potential
that it experiences at its current position and its gradient with respect to its
position. A variety of implementations to extract this required information
could be devised.
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Figure 1.2. Trajectories of robots while spreading themselves uniformly over a circle.

6. Case Study Using a Particular
Implementation

In this section, we investigate the performance of the particle interaction
self-organization model for a particular choice of the potential function. Specif-
ically, we will concentrate on the inverse-distance-squared type potentials. Un-
der this assumption, the potential field that emanates from a particle obeys the
following rule as a function of distance,d.

v(d) = A/d2 (22)

Self-Organizing in a Circular Region: For a given number of robots, it is
possible to approximately compute the threshold that will yield a unit radius.
Due to the potential function in (22), we expect from symmetry and scalability
thatγ(A, r,N) = Aγ(1, 1, N)/r2. Using 10 Monte Carlo simulations for each
of theN values (number of robots), we have empirically determinedγ(1, 1) to
be approximately in the following form.

γ(1, 1, N) = aN b (23)
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Figure 1.3. Average time of convergence versus maximum-speed-to-desired radius ratio for
three collective sizes. Tmin denotes the approximate time it takes for the robots to spread to the
desired radius.

From the experimental data, which is shown in Figure 1.1, the coefficients
[a,b] = [0.21128,1.5107] using least-squares. In the Monte Carlo simulations,
the integration time step was assumed to be 0.03s. Better estimates of these
coefficients could be obtained using a smaller time step and more Monte Carlo
simulations. The estimation variance is particularly high for large number of
robots, as we can see from Figure 1.1.

In this particular implementation, the potential field is assumed to be com-
municated using a coded RF signal. The transmitted signal power is denoted
by A in (22). In order to improve robustness to noise and jamming, we as-
sume that the signal is modulated using a pseudo-noise sequence, specifically
an m-sequence [10]. Signals coming from different robots can be distinguished
at the receiver side using the autocorrelation properties of m-sequences [22].
If we assume that each robot is equipped with a grid of antennas measuring
the potential, the gradient of the potential can also be approximately obtained
using the first order difference approximation for differentiation.

A sample self-organization simulation usingN=15 robots is presented in
Figure 1.2. Here, the m-sequences are of length 127, and the desired radius is
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Figure 1.4. Guiding of robots towards a target using interaction forces (IF) with base stations.
IF vector is a rotated version of the gradient of the information potential (IP) due to the base
stations.

r=2. The robots are assumed to have a 3x3 antenna grid and the integration
time step is once again 0.03s.

In order to get an idea on how much time it takes for the self-organization
to be achieved under the described settings, we have conducted a series of
Monte Carlo simulations. In these simulations, however, we have realistically
restricted the magnitude of the velocity vector of each robot in order to avoid
very large displacements in position in a very short time. The convergence time
is measured in seconds using the distance of the farthest particle to the average
position, where convergence is assumed to be achieved when the fluctuations
of this quantity in time reduces to insignificant levels. The average conver-
gence times for three different sizes of collectives are shown in Figure 1.3 as
a function of the maximum-speed-to-desired-radius ratio. In all simulations,
the initial positions of all robots are selected from a two-dimensional normal
distribution highly concentrated around the origin. Therefore, approximately
desired-radius/maximum-speed seconds are spent just for the robots to reach
the boundaries of the desired circle, which is denoted by Tmin in Figure 1.3.
The additional time is spent on self-organizing into the uniform distribution
scheme. As expected, as the number of agents in the collective increase, the
time required for this organization stage increases.

Target Tracking Using Interactions with Base Stations: Our assumption
about the knowledge base of the robots was that they only had access to their
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relative distances, but not to their own or each other’s absolute position in
an inertial coordinate frame. This assumption limits the self-achievability of
homing to a target or target tracking. In some scenarios, it is not realistic to
assume that some beacon signal is transmitted from the target location [15]. It
is possible to modify the line-of-sight guidance principle, however, to lead the
robots to a desired location.

We assume that each base has access to the following information: line-of-
sight angle to the centre of the robot collective, and line-of-sight angle to the
target (even if there is no physical line-of-sight). Each base station, is then
assumed to transmit an m-sequence coded direction bit selected from{-1,+1}
to indicate which direction the robots should move towards in order to meet the
target. The base stations can be distinguished by the robots if they are assigned
different signature sequences. The amount of interaction force between each
robot and the base station of interest can again be calculated using similar
ideas to the inter-robot interaction forces. The robot-base interaction force is
calculated in a similar manner to that between the robots; however, its direction
is not only changed by 1800, but depending on the combination of bits from
the base stations, it can be rotated 900 in either direction also. In the two-
dimensional scenario, two base stations suffice to guide the robots towards the
target.

In order to demonstrate this guidance algorithm that is based on interactions
between the robots and the bases, we present a couple of snapshots of the robot
positions during the course of homing onto a stationary target in Figure 1.5.
This guidance, however, works as well for moving targets. In this operation
mode, each robot experiences a command that is the superposition of the inter-
robot and robot-base interaction forces.

Avoiding Obstacles Using Interaction Forces Based on Visual Feedback:
Suppose that each robot is equipped with a simple camera for visual detection
of obstacles on its trajectory. Let the view-interval of the camera be aligned
with the velocity vector (i.e., there are no attack and sideslip angles between the
frontal body direction and the velocity vector. Based on the location, the area of
the obstacle in the camera view, and its rate of growth, the robot can calculate
an interaction force to move itself away from the obstacle while deviating from
its current trajectory minimally. A sample situation is depicted in Figure 1.6.
The robot could try rotating its velocity vector to avoid the obstacle as quickly
as possible. If the obstacle does not occupy pixels on both sides of the view
frame origin (center), there is no need for a course change, since the current
velocity already avoids the obstacle.

In a two-dimensional motion space, the obstacle will appear as a line seg-
ment in the view, whose length increases gradually as the robot approaches
it. Assume that the robot is moving towards an obstacle whose length in
the frame increases according to the similarity principles. In particular, the
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Figure 1.5. Guiding the robots towards a stationary target using robot-base interaction forces
in conjunction with inter-robot interaction forces to achieve uniform spreading.

 

Obstacle 

Robot 

 

Figure 1.6. On the left, the robot sees an obstacle in its view area (boundaries denoted by
solid lines) while moving along its current velocity vector (denoted by dotted arrow). On the
right, the area that the obstacle covers in the view area becomes larger.

length of the obstacleL1 andL2 at two distancesD1 andD2 are related by
L1/D1 = L2/D2 (assuming that the obstacle fully remains in the view frame
at both positions). Therefore, the distance to the obstacle can be estimated as
D= cL, wherec is some proportionality constant. Once again, assuming an
inverse-distance-squared type interaction law between the robot and the obsta-
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Figure 1.7. Snapshots of robot positions (dots) at various instances, while moving towards
right along the dotted trajectories, which are determined by the interactions between the robots
and the obstacle located atX = 3.

cle, the interaction force for the robot due to the obstacle in sight is obtained
to be

Fobst =
min(Lleft, Lright)
max(Lleft, Lright)

(
2

c2L3

)
Rṗ (24)

whereR is a rotation matrix such that the direction of the force is rotated 900

right or left towards the minimum ofLleft andLright. These last two quantities
are the lengths of the portions of the obstacle on the left and right side of the
current velocity vectoṙp, respectively. In simplest terms, the interaction law
defined in (24) is equivalent to the obstacle emitting a signal whose power
decays as the inverse of the distance, which is in turn used by the robot as the
magnitude of the interaction force. The direction of this force is then found
based on how this obstacle is located in the view of the robot.

A sample trajectory plot for a group of agents under the interaction law
given in (24) when they encounter an obstacle is shown in Figure 1.7. In the
mean time, the robots continue to interact among themselves to move into the
circular formation. This example demonstrates how the interaction model can
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be applied to the problem of obstacle avoiding in a simple experimental setup.
More complicated interaction laws can possibly designed depending on the
design parameters of the robots.

7. Conclusions
Research on swarm robots is becoming increasingly popular due to numer-

ous applications where such self-organizing cooperative systems can be useful.
Such cooperative task management requires extensive communication and re-
sources. Since the resources available to the agents in such a collective are
limited by the design parameters, self-organization into a certain orientation
should be achieved with as little resources as possible.

In this paper, we proposed a self-organization principle based on particle
interactions through a predefined interaction law. Specifically, for the problem
of uniformly distribution over a predefined region, these interaction laws are
firmly connected to the maximization of swarm entropy. Nevertheless, simi-
lar interaction principles can be derived to achieve other tasks, such as target
tracking and obstacle avoiding, as we have demonstrated here.

It is remarkable that the simple principle of particle interactions can be
applied to the problem of collective behavior control of multiple agents for
achieving a variety of tasks. Although the initial idea started out as a purely
self-organization scheme based on maximization of system entropy in a fixed
volume, it has been observed through the examples shown here that the appli-
cability of the underlying principles, i.e., particle interaction laws, are more
general than this simple special case. It has been shown to be possible that ev-
ery task can be formulated in this framework where the agents in the swarm as
well as any external entity that is supposed to have an effect on the collective
behavior can be regarded as a particle. The behavior of the agents are solely
defined by the pair-wise interactions they experience with every other particle
in the system, let it be a target, a base, or an obstacle. The potential function,
which defines the interactions between pairs of particles, can be designed to
suit the needs of the task under consideration, as well as the available hard-
ware and information. Thus the designer has great flexibility in this respect.

In this paper, we have made certain assumptions about the knowledge and
hardware base of the robots in the swarm, and designed interaction laws specif-
ically suited to these schemes. This was necessary for illustration purposes;
however, the principle behind the presented self-organization and cooperative
control is quite general, as discussed above. Therefore, it is possible to de-
sign swarms of robots with other capabilities and come up with corresponding
particle interaction laws for cooperative behavior. The details of such designs
can only be completed after the specifications of the design parameters are
provided.
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