ERCOT’s Experience in Identifying Parameter and Topology Errors using State Estimator

Jian Chen, N. D. R. Sarma, Freddy Garcia, Alex Sills, Prakash Shrestha, Thinesh Mohanadhas, Joe Weatherly, Tim Mortensen, John Dumas

ERCOT

2010 IEEE PES General Meeting, Minneapolis
29th July 2010
ERCOT Capacity and Demand

- **One of the largest single control areas in US**
 - 40,327 miles of transmission (345kV & 138kV)
 - 85% of Texas load

- **Capacity**
 - 75,755 MW active generation (84,237 MW installed)
 - Current reserve margin ~21.4%
 - Wind capacity: 9,117MW – most in nation

- **All-time Peak Demand**
 - 63,400 MW peak load (July, 2009)

- **Market Size**
 - 6 Million Customer with right to choose
 - $ 34 Billion Market
• Role of the operator is to know the status of the system and make sure that it is always very secure (N-1 Secure)

• Real-Time Network Security Analysis
• AREVA’s EMS is used in ERCOT
 - Some functions were developed internally in ERCOT

• Application Functions
 - State Estimation (RTNET) –WLS Method
 - Real-time Contingency Analysis (RTCA)
 - Dynamic Ratings (developed internally)
 - Study Network Analysis (STNET)
 - Voltage Stability Analysis (VSAT)
 - Transient Stability Analysis (TSAT)
SE Statistics (SESTATS)

SESTATS is a tool developed in-house at ERCOT. It monitors SE performance and metrics, and aids in identifying possible topology errors. The metrics captured by SESTATS include:

- Topology changes in the power system as seen by SE
- Availability of real-time telemetry to SE
- Quality of the real-time telemetry based on the estimates computed by SE
- Convergence quality of the SE solution and an SE execution summary
- Detected measurement residuals (categorized based on equipment types)
- Measurement redundancy and observability information
- Statistics data derived from the above information compiled to analyze long term trends

State Estimator Overall Monitoring

Application: Realtime Network

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>07-Jul-2010 10:05:06</td>
<td>07-Jul-2010 10:05:09</td>
<td>07-Jul-2010 10:05:25</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>45379</td>
<td>44556</td>
<td>854</td>
<td>1.92%</td>
</tr>
<tr>
<td>07-Jul-2010 10:00:06</td>
<td>07-Jul-2010 10:00:10</td>
<td>07-Jul-2010 10:00:24</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>45022</td>
<td>44202</td>
<td>849</td>
<td>1.92%</td>
</tr>
<tr>
<td>07-Jul-2010 09:55:06</td>
<td>07-Jul-2010 09:55:14</td>
<td>07-Jul-2010 09:55:27</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>44783</td>
<td>43962</td>
<td>856</td>
<td>1.95%</td>
</tr>
<tr>
<td>07-Jul-2010 09:50:12</td>
<td>07-Jul-2010 09:50:15</td>
<td>07-Jul-2010 09:50:28</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>44665</td>
<td>43842</td>
<td>858</td>
<td>1.96%</td>
</tr>
<tr>
<td>07-Jul-2010 09:45:07</td>
<td>07-Jul-2010 09:45:10</td>
<td>07-Jul-2010 09:45:24</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>44407</td>
<td>43592</td>
<td>850</td>
<td>1.95%</td>
</tr>
<tr>
<td>07-Jul-2010 09:40:06</td>
<td>07-Jul-2010 09:40:09</td>
<td>07-Jul-2010 09:40:22</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>44055</td>
<td>43238</td>
<td>851</td>
<td>1.97%</td>
</tr>
<tr>
<td>07-Jul-2010 09:35:06</td>
<td>07-Jul-2010 09:35:10</td>
<td>07-Jul-2010 09:35:27</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>43730</td>
<td>42923</td>
<td>843</td>
<td>1.96%</td>
</tr>
<tr>
<td>07-Jul-2010 09:30:06</td>
<td>07-Jul-2010 09:30:10</td>
<td>07-Jul-2010 09:30:24</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>43594</td>
<td>42796</td>
<td>837</td>
<td>1.96%</td>
</tr>
<tr>
<td>07-Jul-2010 09:25:06</td>
<td>07-Jul-2010 09:25:10</td>
<td>07-Jul-2010 09:25:23</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>43417</td>
<td>42623</td>
<td>829</td>
<td>1.95%</td>
</tr>
<tr>
<td>07-Jul-2010 09:20:10</td>
<td>07-Jul-2010 09:20:15</td>
<td>07-Jul-2010 09:20:29</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>43308</td>
<td>42522</td>
<td>825</td>
<td>1.94%</td>
</tr>
<tr>
<td>07-Jul-2010 09:15:07</td>
<td>07-Jul-2010 09:15:11</td>
<td>07-Jul-2010 09:15:25</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>43058</td>
<td>42275</td>
<td>822</td>
<td>1.95%</td>
</tr>
<tr>
<td>07-Jul-2010 09:10:05</td>
<td>07-Jul-2010 09:10:13</td>
<td>07-Jul-2010 09:10:32</td>
<td>VALID SOLUTION</td>
<td>✓</td>
<td></td>
<td>42807</td>
<td>42025</td>
<td>822</td>
<td>1.96%</td>
</tr>
<tr>
<td>07-Jul-2010 09:06:50</td>
<td>07-Jul-2010 09:06:55</td>
<td>07-Jul-2010 09:07:09</td>
<td>VALID SOLUTION</td>
<td></td>
<td></td>
<td>42607</td>
<td>41823</td>
<td>817</td>
<td>1.95%</td>
</tr>
</tbody>
</table>
Coherency Check Using SESTATS

- Dead Equipment with Active Measurements

SESTATS tracks discrepancies between the equipment status and the analog telemetry values.
Coherency Check Using SESTATS

• Branch Status Error

A branch in the SE model can be a transmission line, transformers or zero-impedance branch (ZBR)
Coherency Check Using SESTATS

• Injection Status Error

An injection could be a generator or load
Coherency Check Using SESTATS

• CB Status Error

SESTATS also detects a discrepancy between CB status and existing analog measurements assigned to the CB
Detecting Topology Errors via SE Results

• Limitation of SESTATS
 - Requires available measurements on the elements
 - Cannot identify the complicate errors

• Topology errors lead to measurement residuals
 - Topology errors, like bad telemetry values, usually cause large measurement residuals around the locations of errors in SE results.
 - Bus mismatch is also a good indicator for the existence for topology error.
• Detecting and identifying the wrong branch status using SE results
Detecting Topology Errors via SE Results

• Detecting and identifying the bus splitting/merging issue via SE result
Detecting Topology Errors via SE Results

- Detecting and identifying the bus splitting/merging issue via SE result
Detecting Topology Errors via SE Results

- Detecting and identifying the bus splitting/merging issue via SE result
Detecting Topology Errors via SE Results

- Detecting and identifying the bus splitting/merging issue via SE result
Detecting Parameter Errors via SE Results

- Detecting and identifying the bus the line/transformer impedance

- Detecting and identifying the shunt device parameter
Conclusions

• Cooperation among groups inside ERCOT and between ERCOT and TDSPs is very important to identify and correct the topology and parameter errors.

• Measurement redundancy is important to detect and identify errors. Errors in areas with high measurement redundancy are much easier to detect compared to those with low measurement redundancy.

• By applying KCL rules as pseudo-measurements in SE, the bus mismatches are used as another indicator for possible errors around a specific bus.

• SE monitoring tools can greatly help operations engineers to monitor the SE performance, and check for discrepancies between analog measurements and element status to provide a simple way to detect potential topology errors.
Thank U !!

ndrsarma@ieee.org