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ABSTRACT
We study traces taken from UMass DieselNet, a Disruption-Tolerant
Network consisting of WiFi nodes attached to buses. As buses
travel their routes, they encounter other buses and in some cases
are able to establish pair-wise connections and transfer data be-
tween them. We analyze the bus-to-bus contact traces to character-
ize the contact process between buses and its impact on DTN rout-
ing performance. We find that the all-bus-pairs aggregated inter-
contact times show no discernible pattern. However, the inter-
contact times aggregated at a route level exhibit periodic behavior.
Based on analysis of the deterministic inter-meeting times for bus
pairs running on route pairs, and consideration of the variability in
bus movement and the random failures to establish connections, we
construct generative route-level models that capture the above be-
havior. Through trace-driven simulations of epidemic routing, we
find that the epidemic performance predicted by traces generated
with this finer-grained route-level model is much closer to the ac-
tual performance that would be realized in the operational system
than traces generated using the coarse-grained all-bus-pairs aggre-
gated model. This suggests the importance in choosing the right
level of model granularity when modeling mobility-related mea-
sures such as inter-contact times in DTNs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and forward net-
works

General Terms
Measurement, Performance, Experimentation, Verification
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1. INTRODUCTION
The many advantages offered by mobile communications have

pushed wireless networks beyond supporting laptops in buildings
to more challenging environments. Many of the wireless mobile
ad hoc networks for groups of vehicles, pedestrians, or tracked
wildlife experience intermittent node connectivity and disconnec-
tion of nodes or groups of nodes due to limitations of power, mo-
bility, node density, and equipment failure. Network architecture
and protocol designs that route data despite intermittent connectiv-
ity among nodes are generally referred to as Disruption-Tolerant
Networks (DTNs). Such networks have been deployed in the con-
text of buses [5, 3, 20], pedestrians [6], animal tracking [15], and
underwater sensor networks [8].

Unlike other network regimes — such as tethered networks or
multi-hop, unpartitioned MANETs — routing performance in DTNs
is primarily affected by the frequency and duration of opportunities
for data transfer between nodes. Therefore, when studying the per-
formance of routing protocols and applications in DTNs, it is im-
portant to have models that accurately characterize these transfer
opportunities.

There is a rich body of work on the measurement, characteri-
zation, and modeling of mobility traces taken from contemporane-
ously connected wireless LANs [23, 13, 17] and mobile ad hoc
networks [14, 2]. Several recent studies have characterized traces
collected from actual mobile networks with intermittent connec-
tivity [6, 5] or adapted from traces collected from wireless LAN,
and evaluate the impact of the measured mobility on DTN applica-
tions [21, 11]. These works characterized only certain aspects of
traces, e.g., the aggregate inter-contact time or the contact graph,
without considering which aspects of the underlying mobility pat-
terns are most important in determining DTN performance and
therefore need to be captured and modeled accurately.

In this paper, we develop a generative model of the inter-contact
time of DTN nodes based on traces collected from our operational
vehicular DTN, UMass DieselNet [5]. The model is generative
in that it can be used to generate synthetic traces of node inter-
contact times that can then be used to drive simulations. As we
will see, however, these models are of interest in their own right,
as models at the appropriate level of granularity can reveal struc-
ture that is hidden at the aggregate level and that can influence
DTN performance. Indeed, a focus of our research is to under-
stand the right level of modeling granularity so that traces generated
by the model can then be used in simulation to accurately predict
DTN performance. We show that while the all-bus-pairs aggre-



gated inter-contact times show no clear pattern, inter-contact times
at the bus-route level show periodic structure that can be modeled as
mixtures of normal distributions (whose parameters can be inferred
from empirical traces using an EM algorithm). Using a trace-driven
simulation of epidemic routing, we show that this finer-grained
route-level model of inter-contact times predicts performance much
more accurately than the coarser-grained aggregated all-bus-pairs
model.

The remainder of this paper is structured as follows. Section 2
describes our testbed and trace data. In Section 3, we describe the
performance metrics that we use to evaluate our generative model.
In Section 4, we evaluate the aggregate model used in previous
work and show that it does not perform well by our metrics. In
Section 5 we propose a route-level model that generates synthetic
traces that better match the routing performance of the original
trace. We review related works in Section 6, and summarize the
paper and discuss future work in Section 7.

2. UMASS DIESELNET TRACES
In this section, we give a brief description of UMass DieselNet

[5] and the traces collected from this system. We then describe how
we pre-process these traces.

2.1 Testbed Overview
DieselNet consists of 40 buses serving the area surrounding the

UMass Amherst campus. Each bus is equipped with a Linux com-
puter, an 802.11b Access Point (AP), a second 802.11b interface,
and a GPS device. The AP on each bus beacons its SSID once
every 100 ms. The second radio continuously searches for SSID
broadcasts. On discovering a remote bus’s AP, the discovering bus
obtains an IP address from the remote bus. Then, a TCP connec-
tion is opened, initiating a contact event, and data is continuously
transmitted to the remote bus until the TCP connection is broken
when the buses move out of range. Once the socket reports an error
or closure, the contact event is marked as ended and logged. For
each contact, the receiver logs the ID of the sender, the time, dura-
tion, and the number of bytes received. These bus-to-bus transfer
records are transmitted to a central repository whenever a bus is
able to associate with a fixed 802.11 access point that is attached to
the Internet (e.g., offered by a cafe or in the bus garage). We refer
to the records of the times and locations that each bus connects to
fixed APs as (bus-to-AP) check-in records.

It is helpful to understand how buses are scheduled and dis-
patched since these are the primary determinants of bus mobility.
The bus system serves approximately ten routes. Some routes have
more buses running at the same time than others. In this paper,
we focus on the three most popular routes, the campus SHUTTLE
that tours the campus in a butterfly shape route (see Section 5.2
for details) and the SN_SA and NA_BR routes that travel between
our campus and nearby towns within 150 square miles. During
weekdays, beginning at approximately 7 A.M. and ending at ap-
proximately 7 P.M., there are multiple shifts serving each of these
three routes. The shifts within a route are spaced so that there is a
15-minute spacing between shifts. Each of the other seven routes
is served by only one or two shifts at a time, or they may be served
only every other day, and in general we have fewer data points char-
acterizing their operation.

For dispatching and driver assignment purposes, shifts are di-
vided into morning (AM), midday (MID), afternoon (PM), and
evening (EVE) sub-shifts. In the morning, drivers choose buses at
random to run the AM sub-shifts. At the end of the AM sub-shift,
the bus is often handed over to another driver (often at a bus stop)
to operate the next sub-shift; but in some cases, the bus returns to

X2 X3X1 7pm4X
A −− B
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Figure 1: A contact process between bus A and bus B. Here
X2, X3 are fully observed inter-contact time, X1 is a start-
censored observation, and X4 is a end-censored observation of
inter-contact time

the bus garage, and it is then possibly assigned to another shift on
that route or to another route.

Our results are based on the study of 55 days of traces col-
lected during the spring 2006 semester, from Jan 30 to May 28
with weekends, spring break, and holidays removed since during
these times the buses run on reduced schedules. We focus on the
events logged between 7 A.M. and 7 P.M. for each day, when buses
run regularly. We also use bus dispatching records, which record
the mapping from buses to routes and shifts for each day. Both
the traces and dispatching records are available for download at
http://traces.cs.umass.edu.

2.2 Mobility Traces Preprocessing
As discussed earlier, when two buses are in transmission range,

each one connects to the other’s AP to transmit data to the other
bus using a separate TCP connection, i.e., the recorded contacts
are directional. The contacts in both directions are over the same
802.11b channel; as a result, during one physical meeting of two
buses, there can be multiple directional contacts (in both directions)
as they gain or lose access to the shared channel. We note that
this is due to the way the current system is built; we can imagine
systems where symmetric contact is established when two buses
meet or where two different channels are used for the contacts in
each direction. As we wish to focus on the mobility rather than
the specific operations of the bus nodes (including MAC layer),
we assume all contacts are symmetric, i.e., data can flow in either
direction.

In our traces, there are many very short inter-contact times. This
occurs, for example, when two buses that travel closely in the same
direction repeatedly come in and out of range of each other as their
spacing changes with the road traffic. We merge such events as
little else can occur between the contacts. Specifically, for each
pair of buses, we combine any two subsequent contacts that occur
within 60 seconds of each other. The merged contact has a starting
time equal to the earlier contact’s starting time and an ending time
equal to the later contact’s ending time.

Figure 1 illustrates the contact process between two buses, A
and B, during a day. In the figure, we use black boxes to represent
contacts and spaces in-between to represent the interval between
contacts. We refer to the duration of time between two subsequent
contacts as the inter-contact time.

We observed that some buses operating on routes during a day
were not observed in the traces. It may be the case that the bus did
not physically meet other buses, but it may also be the case that
the bus failed to set up TCP connections when in range of other
buses. There are several reasons for the latter. When the buses are
moving at high speeds, there is not enough time for two passing
buses to form an 802.11 association and initiate a TCP transfer; we
have data on bus speeds that confirms this problem. Hardware fail-
ures are not uncommon on the testbed and occasionally mechanics
disable the system when servicing the bus and neglect to enable
it afterward. As we don’t know whether devices were function-
ing correctly when the traces were collected, for any day, if we
observed a bus in the bus-to-bus transfers or bus-to-AP check-in



transfer & transfer & no transfer & no transfer &
check-in no check-in check-in no check-in

Counts 1055 42 34 228
% 77.91 3.1 2.5 16.84

Table 1: Number and fraction of four different cases of daily
bus status. There are 1,354 records in total.

records, then we assume the device on the bus worked properly for
that whole day; otherwise, the device was assumed to be faulty and
the bus was removed from the trace for the day.

Table 1 shows, among all the buses running on routes during the
whole trace, the numbers and fractions of instances that a bus (i)
had transfer records and check-in records, (ii) had transfer records
but no check-in records, (iii) had no transfer records but had check-
in records, and (iv) had no transfer records or check-in records dur-
ing a day. We observe that the correlation of “having a bus-to-bus
contact” and “having check-in records” is high.

3. PERFORMANCE CHARACTERISTIC
UNDER THE TRACE

Our goal of modeling the bus mobility trace is to correctly pre-
dict DTN routing performance. There have been many routing
schemes proposed for mobile DTNs, but we focus here on basic
epidemic routing as it provides the best-case delivery delay perfor-
mance. In this section, we first describe epidemic routing and the
performance metrics that we are interested in, and then briefly de-
scribe the trace-driven simulation we use for evaluating epidemic
routing under given mobility trace.

3.1 Epidemic Routing and Performance
Metrics

Epidemic routing [24] adopts a “store-carry-forward” paradigm:
a node receiving a packet buffers and carries that packet as it moves,
passing the packet on to new nodes that it encounters. Analogous to
the spread of infectious diseases, each time a packet-carrying node
encounters a new node that does not have a copy of that packet, the
carrier is said to infect this new node by passing on a packet copy;
newly infected nodes, in turn, behave similarly. The destination re-
ceives the packet when it first meets an infected node, and initiates a
recovery process that delete packets copies at infected nodes by the
propagation of acknowledgment information in the network [25,
26, 5]. Many recovery schemes have been previously proposed and
studied; we will adopt the VACCINE recovery scheme in which
acknowledgment information is propagated maximally in the same
manner as data packet.

For DTN routing schemes, there exists a trade-off between packet
delivery delay and resource consumption in terms of transmission
bandwidth. In this work, in addition to the two most important per-
formance metrics, packet delivery delay and total number of copies
made for a packet in the network, we also study the number of hops
of the minimal delay paths discovered by epidemic routing. This
hop count metric is useful in setting the maximum number of hops
in a K-hop scheme [9].

3.2 Trace-Driven Simulation of Epidemic
Routing

As our primary focus is on the impact of mobility, we assume
there is no resource contention in the network in terms of band-
width or buffers. We assume that when two buses come into con-
tact, they can instantaneously exchange an arbitrary number of pack-
ets. Under these assumptions, we develop a trace-driven simulation

to evaluate the performance of epidemic routing under a given mo-
bility trace. We note that delay performance under epidemic rout-
ing coincides with the best-case performance. The simulation gen-
erates a finite number of packets to evaluate packet delivery delay,
the number of copies made, and epidemic path hop count for pack-
ets generated at any instant of time between any bus pairs. The
details are given in Appendix A.

As an example, Figure 2(a) plots the delivery delay under epi-
demic routing and direct source-to-destination transmission for pack-
ets sent from bus 3029 destined to bus 3038 at any time between
7 A.M. and 7 P.M. on April 4, 2006. We observe a significant dif-
ference between the delays achieved by epidemic routing and by
direct transmission (i.e., where only the source can deliver a packet
directly to a destination). As the two buses have only one contact
on this day, the delay under direct transmission is very large. Epi-
demic routing, however, is able to make use of other buses to relay
packets, achieving an average delay of 67.5 minutes. Figure 2(b)
plots the number of copies made for a packet generated on the same
day for this unicast pair under IMMUNE (where the acknowledg-
ment is not propagated in the network; only destination node can
“cure” infected nodes) and VACCINE recovery.

These delay-versus-generation-time and copies-versus-generation-
time figures exhibits a piece-wise linear property (details given in
Appendix A). Making use of this property, we can evaluate the
cumulative distribution function for packet delivery delay, copies
made, and hop count, assuming packets arrive uniformly randomly
to each bus pair, at times uniformly randomly distributed between
7 A.M. to 7 P.M. for all the 55 days in the trace. For example,
Figure 2(c) plots the cumulative distribution function of packet de-
livery delay for all bus pairs over the whole trace. Our goal is to
build a generative model that accurately captures DTN routing per-
formance in terms of the above cumulative distribution functions of
delivery delay, copies made and hop counts under epidemic rout-
ing.

4. AN AGGREGATE MODEL FOR BUS DTN
The contact processes between node pairs, and in particular, the

inter-contact times between node pairs, determine DTN routing
performance. In this section, we characterize and model the bus
mobility traces by studying the all-bus-pairs-all-day aggregated inter-
contact time. Such approach has been taken by Chaintreau et al. [6].
The underlying assumptions made by such approach are (i) the con-
tact processes of node pairs are renewal processes, (ii) there is no
correlation between the contact processes of different node pairs.

In the remainder of this section, we first define the different inter-
contact time observations in the trace. We then present the aggre-
gate inter-contact time statistics. Finally, we evaluate a generative
model based on the aggregate statistics.

4.1 Censored Observations of Inter-Contact
Times

Recall that in Section 2.2, we have defined the inter-contact time
as the time between two subsequent contacts. For any mobility
trace, however, we have different inter-contact time observations.
First, there are fully observed inter-contact time, measured as the
duration of time from the end of a contact to the beginning of the
subsequent contact, such as X2, X3 in Figure 1. There are also
some incomplete observations of inter-contact times. Suppose that
we measure the system from 7 A.M. to 7 P.M., for each bus pair, the
duration from 7 A.M. to their first observed contact, such as X1 in
Figure 1, is a censored observation. We refer to such an observation
as a start-censored observation, as we don’t know when the inter-
contact time starts. Similarly, the duration of time from the last
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contact between a bus pair to 7 P.M. is also a censored observation,
which we refer to as an end-censored observation. For the case
when two buses have no contacts during this measurement period,
we have a no-meeting observation with duration given by 12 hr for
the bus pair. For such an observation, we do not know the starting
or the ending time of the inter-contact time.

To our knowledge, previous studies of mobility traces studied
the inter-contact time solely based on fully observed inter-contact
times and simply ignored censored observations, with Chen et al. [7]
as an exception. Chaintreau et al. [6] recognized the effect of finite
measurement duration, but did not consider its effect in their char-
acterization of inter-contact time. As longer inter-contact times are
more likely to be censored, ignoring censored observations leads
to an under-estimation of the inter-contact time distribution, espe-
cially when the duration of the measurement is short.

4.2 Aggregate Inter-Contact Time Statistics
To study aggregate inter-contact time statistics, we first analyze,

for each day, the contact process for each bus pair and obtain cen-
sored and fully observed inter-contact times. We then aggregate all
the fully observed inter-contact times and censored observations
together.

Figures 3(a) and (b) plot the empirical complementary cumula-
tive distribution function (ECCDF) and histogram of the aggregated
fully observed inter-contact times, respectively. We observe that
the fully observed inter-contact time distribution has two modes,
and that there are many short inter-contact times.

The above figures do not suggest an obvious model for the ag-
gregate inter-contact time distribution, hence we adopt the standard
Kaplan-Meier estimator (KM estimator) [16] to estimate the CCDF
of the aggregate inter-contact time (also called a survival function),
S(t) := Pr(X > t), based on all observations. Suppose there
are n distinct fully observed inter-contact times in the sample as
follows: T1 < T2 < ... < Tn, and let ni, 1 ≤ i ≤ n be the
number of inter-contact times, including both fully observed and
censored observations, that are greater than or equal to Ti, and let
di, 1 ≤ i ≤ n be the number of inter-contact times of length Ti,
then the KM estimator for S(t) is:

Ŝ(t) =
�

Ti<t

ni − di

ni

. (1)

Eq.(1) is the non-parametric maximum likelihood estimate of S(t).
Figure 3(c) compares the survival function for inter-contact time

(i.e., Pr(X > t)) estimated by the KM estimator, the ECCDF of
fully observed inter-contact times, and the ECCDF of all observa-
tions. The results show a very large difference between the CCDF
of fully observed inter-contact time and Ŝ(t). This comparison
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Figure 5: Comparison of epidemic routing performance under aggregate model generated trace and original trace

demonstrates quantitatively the importance of carefully accounting
for censored observations when modeling inter-contact times.

4.3 Generative Model Based on Aggregated
Statistics

In order to accurately model a DTN mobility trace, is it sufficient
to model the all-node-pairs aggregate inter-contact time? To answer
this question, we compare the routing performance of the original
traces to the synthetic tracesgenerated based on the inter-contact
time statistics.

To generate a synthetic trace that is comparable to the original
trace, we generate traces for the same number of days. For each
day, we generate the same number of active buses as in the origi-
nal trace. The contact process between each bus pair for each day
is generated as follows: we draw the time until their first contact
(since 7 A.M.) from the observed samples of all the start-censored
and no-meeting observations. The subsequent inter-contact times
are drawn based on the KM estimate of the conditional distribution
of inter-contact time given two buses have contacts on the day, cal-
culated using fully observed inter-contact times and end-censored
observations. The contact durations are drawn uniformly and ran-
domly from the aggregate contact duration samples.

We first compare the number of contacts per day in the synthetic
trace with that in the original trace. Figure 4 compares the scatter
plots of the number of contacts versus the number of active nodes
for all the days in the original trace and in the generated trace. It
shows that the aggregate model generates a similar total number of
contacts per day as the original trace.

We then compare epidemic routing performances under the two
traces. Figure 5 compares the all-bus-pairs-aggregated CDFs for
delivery delay, total copies made in the network, and hop count
under the original trace and the generated trace. The results show
that many more packets are delivered and fewer copies are made for
packets based on the generated trace than on the real trace, although
the two traces have a similar number of contacts. (The CDF of the
epidemic path hop count, however, is very close.) The reason is
that, under the aggregate model, contacts are equally distributed to
all bus pairs, leading to more balanced connectivities for all buses,
which in turn results in more packets being delivered. In fact, we
observe that, under original traces, the delivery delays of different
bus pairs can differ quite significantly, whereas the generated trace
incurs similar performance for different bus pairs. This suggests the
need for a finer-grained model to accurately predict DTN routing
performance.

5. MODELING ROUTE-LEVEL
INTER-CONTACT TIMES

Shift01

7am

Shift01
− Shift02 X2 X3 X4

t0 t1

t4
7pm

t1t2 X1

A − B

Shift02
bus Cbus B

bus A

A − C

t2 t3

Figure 6: Obtaining (Shift01, Shift02) contact process from
original traces using dispatching records. Bus A runs Shift01
during [t0, t1], bus B runs Shift02 during [t2, t3], bus C runs on
Shift02 during [t3, t4]. For the (Shift01, Shift02) contact pro-
cess, X1 (X4) is a start-censored (end-censored) inter-contact
time observation, X2, X3 are fully observed inter-contact times.

Our study of the aggregate model in the previous section sug-
gests the need for a finer-grain model in order to capture the het-
erogeneity among different buses. The next question is then: what
granularity shall we use to model the mobility trace ?

One approach is to build the finest-grained model possible by
characterizing the contacts between individual bus-pairs. This is
problematic for two reasons. First, within a day, there are usually
just a few contacts between a bus pair; there are simply not enough
samples to accurately characterize the pair’s contact behavior. Sec-
ond, each bus is randomly dispatched to a route each day and may
change routes during a day, so a bus pair exhibits different meeting
behaviors on different days and even during different times of the
day. Therefore, one cannot simply aggregate traces from multiple
days. For the above reasons, we focus on the contact process be-
tween two buses running on certain shift pairs, i.e., shift-pair con-
tact process, rather than the contact process between two physical
buses. In the following subsection, we describe the process to con-
struct a shift-pair contact process from the original trace, and we
present the route-level aggregate statistics.

5.1 Route-Level Inter-Contact Time Statistics
Recall that for each route in the bus system, there are multiple si-

multaneous shifts continuously running back and forth on the route.
We construct a shift-pair contact process from bus-pair contact pro-
cesses, making use of the bus dispatching records. Figure 6 illus-
trates this process. Suppose that we want to generate the contact
process between Shift01 and Shift02 (both belong to the SN_SA



route). From bus dispatching record, we find that Shift01 (with du-
ration [t0, t1]) is served by bus A, while Shift02 is served first by
bus B during [t2, t3] and then by bus C during [t3, t4] (as shown
by the two middle axes in the diagram). The overlapping time of
the two shifts is [ts, te] = [max(t0, t2), min(t1, t3)]. We then in-
sert those contacts between bus A and bus B (shown in top axis)
that occur when the buses are running on Shift01 and Shift02 re-
spectively into the (Shift01, Shift02) contact process (shown on the
bottom axis), and similarly for bus A and bus C.

In this particular example, our observation of the shift-pair con-
tact process starts at ts and ends at te (i.e., the duration of time
that both shifts are actively running). Under our classification of
different observations, we have X1 (X4) as a start-censored (end-
censored) observation for the shift pair, and X2,X3 as fully ob-
served inter-contact times. If we observed no contacts between two
shifts, we introduce a no-meeting observation of length te − ts.

As we expect different shifts within the same route to exhibit
similar contact processes, we aggregate shift-pair inter-contact time
observations that belong to the same route pair together to study
route-level inter-contact times. For example, Figure 7 plots the his-
tograms of the different observations of the inter-contact time for
route pair (SN_SA,SN_SA). Let’s first consider the censored ob-
servations. We observe the same number of start-censored and end-
censored inter-contact times as expected. There are many instances
when a pair of buses running on this route have no contacts. The
histogram of the fully observed inter-contact times (Figure 7(a)) ex-
hibits interesting periodic behavior and a trend of decreasing prob-
ability for longer inter-contact times. There are a large number of
small inter-contact times (the first peak in the Figure 7(a)). Recall
that we have discussed the possible causes for very small inter-
contact times in Section 2.2, and we have merged contacts that are
less than 60 seconds apart. This figure suggests that there are still
many instances of small inter-contact times even after this process-
ing.

The histograms of fully observed inter-contact times for other
route-pairs show similar periodic behavior. This suggests that there
is interesting structure in the inter-contact times. To better under-
stand the cause of such characteristics, we investigate the determin-
istic meeting behavior of buses in the next section.

5.2 Understanding the Deterministic
Meeting Behavior

In this section, we analyze the meeting patterns of two buses run-
ning on certain routes based on the assumption that buses operate
according to planned schedules and run at constant speed. We de-
fine the inter-meeting time as the duration of time between when
two buses are in transmission range; notice that this is different
from inter-contact time, which is defined as the duration of time
between two subsequent contacts.

We first classify bus routes in our network as either a linear or
butterfly-shaped route. On a linear route, shown in Figure 8(a), a
bus goes back and forth between two endpoints of the route. On
a butterfly-shape route, shown in Figure 8(b), a bus either travels
along direction A → B → C → D → E → F → C → D → A
or in the reverse direction.

For two buses running on a same linear route, let the round trip
time of the route be the time it takes for a bus to travel from an
endpoint to another endpoint and then coming back to the starting
endpoint, then they always meet every half round trip time, regard-
less of the spacing between them.

For a butterfly-shape route, let Tl be the travel time for the left
loop (ABCDA), and Tr be the travel time for the right loop (CDEFC),
then the round trip time is given by Tl + Tr. It’s easy to show that
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(a) Two linear routes: (b) Butterfly Route 
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Figure 8: Linear route and butterfly-shaped route

two buses running in opposite directions either meet periodically
with period (Tl +Tr)/2, or follow the inter-meeting time sequence
{Tl/2, Tl/2, Tr/2, Tr/2, Tl/2, Tl/2, ...}. The former case occurs
when the two buses are spaced so that they do not meet in the joint
segment C − D. Two buses running in the same direction meet in
the C − D segment if their spacing is exactly Tl or Tr . For the
butterfly-shape route in our network, i.e., SHUTTLE, we observe
that Tl ≈ Tr = T , therefore a pair of SHUTTLE buses travel in op-
posite directions have the following inter-meeting time sequences:
{T, T, ...} or {2T, 2T, ...}. In addition, SHUTTLE buses running
in the same direction very rarely meet, as the buses are scheduled
to avoid such meetings.

For two buses running on different routes, we divide the bus
routes into smaller segments as needed, and we keep track the time
that the buses enter or leave these route segments. If during some
time interval, the two buses travel on a same segment in opposite di-
rections, then they will meet each other in the middle of this time in-
terval. For example, for the two linear routes that have overlapping
segments (e.g., SN_SA and NA_BR) as shown in Figure 8(a), we
consider the the following segments S1A, S2A,AB, BE1, BE2,
and let T1,T2,T3,T4,T be the travel time for each segment. The
deterministic inter-meeting times takes up to 5 different values; the
inter-meeting time sequence varies depending on the time-phasing
of the two buses.

5.3 Mean-Restricted Mixture Normal Model
In the previous section, we considered the deterministic meet-

ing sequences between bus pairs, ignoring random influence such
as varying traffic and bus-operation conditions. We found that a
pair of buses running on a specific route pair has a fixed meeting
sequence that is made up a number of inter-meeting times Tbi, i =
1, 2, 3, ..., k.

In reality, due to varying traffic conditions, bus speeds and other
considerations, the inter-meeting time of buses is not constant, but
rather a random variable that we can model as a normal distribution
with mean Tbi and a certain variance. Furthermore, when two buses
are in transmission range of each other, they are not always able to
associate and transfer data, due to high bus speed, or because one of
the buses is already in contact with a fixed access point. As a result,
a data transfer can occur at the l-th physical meeting since the last
contact (l = 1, 2, 3, ...). This means that an inter-contact time is
made up of l inter-meeting times, and thus can be modeled as the
sum of l normal variables with mean given by the Tbi. Indeed, this
type of model is strongly suggested by the empirical data shown
for the fully-observed inter-contact times in Figure 7.

For the case where there is a single inter-meeting time between
a bus pair running on the route-pair, e.g., (SN_SA, SN_SA) and
(NA_BR, NA_BR), or when the inter-meeting times are multiples
of a single base value, e.g., (SHUTTLE,SHUTTLE) route pair, we
propose the following mixture normal model for the inter-contact
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Figure 7: Observations of inter-contact times for SN_SA and SN_SA route pair
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Figure 9: Model fitting result for mean-restricted mixture normal models for (SN_SA, SN_SA) data

times:

fSM (x) =
G�

i=1

wifi(x|iµ, σ2), (2)

where µ corresponds to the base inter-meeting time Tb, σ2 is the
common variance for all normal components, and the weights wi

depend on the specific inter-meeting time sequence for the route-
pair.

We derive an Expectation Maximization algorithm [4] to esti-
mate the model parameters from fully observed inter-contact times1.
As this model (and the model in the next section) focus on the pe-
riodicity of inter-contact time, we have excluded the short inter-
contact time observations when applying the model. We applied
the model to study the (SN_SA,SN_SA) data set, and compared
the empirical CDF of fully observed inter-contact time (with short
inter-contact time removed) with that of the estimated model in Fig-
ure 9(a). We find that they match very well.

The above model has incorporated the periodicity by setting the
means of the normals to be multiples of a single base value. From

1Censored observations are not considered here, as we propose a
model that is more appropriate for taking into account censored
data in Section 5.4.

the original data (e.g., Figure 7), we also observe a geometric trend
in the heights of the different normal components. In Figure 9(b),
we plot the estimated weights, and we find that they match quite
closely with the curve of the geometric sequence pi−1(1−p), with
p = 1 − w0. Actually, if we assume there is a fixed probability
that two buses fail to set up a contact when they meet, then we
have wi = pi−1(1 − p), where i is the number of meetings until a
successful contact.

As for the case where there are multiple inter-meeting times
between a bus pair running on a route pair, such as SN_SA and
NA_BR route pair, one could consider a mixture of normals with
the means set to different linear combinations of the basic inter-
meeting times. As we don’t have enough data samples for such
route pairs in our network, i.e., (SN_SA, NA_BR), (SN_SA, SHUT-
TLE) and (NA_BR, SHUTTLE), we leave the modeling of them for
future work.

5.4 Mean-Weight-Restricted Mixture
Normal Model

The model proposed in the previous section has incorporated
our knowledge about the deterministic meeting sequences of the
route pair, but still involves parameters that have no clear physi-
cal interpretations, i.e., the weights and the number of components.



Furthermore, it’s not clear how to take into account censored ob-
servations when estimating model parameters. Nevertheless, our
analysis of the weights estimated by the model has suggested the
following models that explicitly model the probability of failing to
set up contact when buses are in range.

One-Base-Mean Model. For bus pairs with a single inter-meeting
time, one can use the following model to characterize their inter-
contact times:

fGEO_1P _1BM (x) =
∞�

i=1

pi−1(1 − p)fN (x|iµ, σ2), (3)

where p is the probability that two nodes in transmission range fail
to establish a contact, µ corresponds to the base inter-meeting time,
and a single variance σ2 is used for all normals as buses tend to
keep to their schedules, so the variance does not add up.

In Section 4.2, we have demonstrated that one needs to consider
both fully observed inter-contact times and censored observations
in order to correctly characterize the inter-contact time. Recall that
we have used Kaplan-Meier estimator when we do not assume a
model for inter-contact times. We now discuss how to account for
censored observations when estimating parameters for the above
model.

To consider censored data in the model parameter estimation,
we first need to understand how the censored observations relate to
the inter-contact times. Let’s denote the PDF (Probability Distri-
bution Function) and CDF of the inter-contact time as fX(x) and
FX(x) respectively, and denote the mean of the inter-contact time
as E[X]. We assume that the time we start to observe a shift-pair,
i.e., the time that two buses enter the routes (ts in Figure 6), is a
random incidence into an inter-contact time interval. As a result,
the duration of time until we see the next contact, i.e., the start-
censored observation is the residual lifetime [18] following a PDF
given by fY (x) = 1−FX (x)

EX
. If we observe no meeting, i.e., a no-

meeting censored observation of length te − ts, this means that we
observe a residual life time that is longer than te − ts (the proba-
bility of which is given by 1 − FY (te − ts), where FY (x) is the
CDF for fY (x).). We further assume that all inter-contact times are
equally likely to be cut off in the end, thus an end-censored obser-
vation of value y means that a random inter-contact time has value
larger than y, the probability of which is then 1−FX(y). Based on
the above analysis of the censored data, we derive an EM algorithm
to estimate the parameters p, µ, σ in model (3) from empirical data
(details are given in Appendix B).

It turns out that the above model doesn’t provide a good fit to the
(SN_SA,SN_SA) data set. A careful examination of the traces and
the bus schedule reveals that some shift pairs have fewer contacts
than other shift pairs. This is mainly due to the fact that different
shift pairs meet at different points within the route segment, some
meet at high speeds and others meet at more congested downtown
area at lower speeds. When buses traveling at high speed come
into transmission range, there is shorter duration of time for them
to set up connection and transfer data, which means a higher failure
probability in setting up a contact. Based on these observations, we
extend the above model to account for such factors:

fGEO_MP _1BM (x) =

C�

i=1

wi

∞�

l=1

pl−1
i (1−pi)fN (x|lµ, σ2), (4)

where C is the number of components, and wi specifies the fraction
of bus pairs that have failure probability given by pi.

Similar to model (3), we derive an EM algorithm to estimate the
parameters for the above model, using all observations. We then

use model (4) with C = 2 to model (SN_SA, SN_SA) data set,
and then generate synthetic traces based on the estimated model.
Figure 10(a) and (b) respectively compare the CCDF of the model-
generated fully observed inter-contact time and censored observa-
tions with those in the original traces. We observe that for the fully
observed inter-contact times, the original data fall within the 95%
confidence interval of the model. As to the censored observation,
the match is less good. We believe that this is due to the fact that
there are other failure conditions that haven’t been taken into ac-
count in the model, such as bus hardware failure or hardware being
turned off for certain duration.
Two-Base-Mean Model. Recall from our deterministic analysis of
the SHUTTLE route that (i) a bus pair running on SHUTTLE in the
opposite direction either meet every half round trip time T or every
round trip time 2T ; (ii) a bus pair running in the same direction
very rarely meet with each other. Based on this knowledge, we
propose the following model for the inter-contact time for a pair of
SHUTTLE buses running in the opposite directions:

fGEO_2BM (x) =

2�

i=1

wi

∞�

l=1

pl−1
i (1 − pi)fN (x|liµ, σ2). (5)

Similar to the One-Base-Mean model, we develop an EM algorithm
to estimate the parameters for the above model from the fully ob-
served data and censored data. We apply the model to (SHUTTLE,
SHUTTLE) dataset, and the results are plotted in Figure 10(c),
which shows a good fit of our model to the empirical data.

5.5 Model Comparison
In this section, we compare three models, i.e., the model based

on all-shift-pair aggregate statistics, the model based on route-level
statistics, and the route-level model described in the last section,
with a focus on their accuracy in capturing epidemic routing per-
formance of the original trace.

We first process the original traces to include only buses run-
ning on the three routes that we have been focusing on, and we
analyze this thinned trace to obtain aggregated inter-contact time
statistics and route-level aggregated statistics. We then generate
three synthetic traces. The first synthetic trace is generated based
on all-shift-pair aggregated statistics, using the procedure described
in Section 4.3; the second synthetic trace is generated based on the
route-level statistics in a similar way; the third synthetic trace is
generated using the route-level inter-contact models that we devel-
oped based on the route-level statistics in the last section, com-
bined with route-level statistics for route-pairs that we don’t have a
model for. Last, we simulate epidemic routing respectively over the
thinned original trace and the three synthetic traces. Figure 11 com-
pares routing performance in terms of delivery delay, copies made,
and the hop count of minimal delay paths under the four traces. We
observe that under the four traces, the difference in delivery delay
is the largest, followed by copies made. All traces have similar hop
count CDF.

Similar to what we have observed in Figure 5 in Section 4.3,
the trace generated by aggregate model exhibits significantly dif-
ferent performance compared to the original trace (i.e., the trace
of inter-contact times empirically observed in the operational bus
network). The trace based on route-level statistics, which is able
to capture the heterogeneity among different bus routes, exhibits
epidemic routing performance closer to the original trace.

Now let’s focus on the the route-level model generated trace. We
find that under this trace, all performance metrics are closer to the
original trace than those of the previous two traces. In particular,
under this trace, the average delivery delay is 15.8% larger than that
under the original trace; and the packet delivery ratio is 0.75% less
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Figure 11: Comparison of epidemic routing performance under original trace and synthetic traces generated by three different
models

than that under the original trace. We think that the larger delivery
delay and slightly smaller delivery ratio are due to the fact that our
route-level model does not capture those short inter-contact times,
and therefore it generates fewer contacts than the original ones.
Nevertheless, as the model captures longer inter-contact times ac-
curately, it’s able to predict the longer time range delivery perfor-
mance well.

As the route-level models are developed based on route-level
statistics, it’s somehow surprising that the prediction performance
of the former is better than the latter. Our explanation is that in the
route-level model we developed, we have treated the SHUTTLE
bus pairs traveling in the same direction, and those traveling in the
opposite direction differently, whereas in route-level statistics, we
treated them together in SHUTTLE-SHUTTLE route pair. A re-
lated comment is that we expect that the granularity between shift-
and route-level might be able to capture different meeting behav-
ior exists between different shift-pairs within a route, and therefore
will achieve a good balance between model complexity and predic-
tion performance.

6. RELATED WORKS
Many previous works have proposed mobility models [12, 23,

13, 17, 19] and some works have been based on studies of real mo-
bility traces [23, 17]. Our work differs significantly from the above
because we model the contact process between node pairs and in
particular, the inter-contact time distribution between node pairs,
as contact opportunity frequency and duration are the main deter-
minants of DTN routing performance. Moreover, our traces are
generally longer and more fine-grained than those used in previous

studies and are based on actual TCP transfers.
Two recent works have studied DTN mobility traces through

characterization of aggregate inter-contact times. Chaintreau et
al. [6] characterized the all-node-pairs aggregate inter-contact times
from six short mobility traces of pedestrians carrying bluetooth de-
vices. They observed an approximately power-law distribution of
inter-contact times, with a power law index less than 1. Based on
this observation, the authors proposed a simplified stationary i.i.d.
contact model with power-law distributed inter-contact times, and
they analytically studied the performance of different forwarding
algorithms under such a model. The question of whether an aggre-
gate model is sufficient for predicting DTN routing performance
was not addressed. Their study did not account for censored ob-
servations in the characterization of aggregate inter-contact times.
Chen et al. [7] took into account censored observations, and pro-
posed a censorship removal algorithm in their studies of the ag-
gregate inter-contact times of the UCSD trace [1] and Dartmouth
College WLAN trace [10].

Hsu and Helmy [11] also used Dartmouth traces [10] to study
encounter-based broadcasting. They studied the trace induced en-
counter relationship graph (where a pair of nodes is connected with
an edge if they ever meet each other), found it exhibits a small
world property, and showed that encounter-based forwarding is ro-
bust to selfish node behaviors. For both works, the traces used are
WLAN traces, rather than a real trace collected from a DTN, and
the approximation with the same access point is used to infer con-
tacts between a pair of devices.

Finally, Su et al. [22, 21] studied DTN traces collected from a
network of 20 students carrying PDAs with bluetooth radio. The



paper studied direct contact and multi-hops paths between node
pairs, and used trace driven simulation of epidemic routing and
link-state routing to characterize the trade-off between delay and
replication.

7. SUMMARY
In this work, we have studied mobility traces taken from UMass

DieselNet, with the goal of building a generative model that can
capture aspects of mobility (specifically inter-contact times) at the
right level of granularity. The model is generative in that it can be
used to generate synthetic traces to drive a trace-driven simulation.
Although this model is derived from mobility traces collected from
a specific bus-based network, we expect such a model is applica-
ble to other transport based networks that follow certain periodic
schedules. Further work is needed to validate the model using mo-
bility traces collected from different networks once they become
available.

As the first careful study of a fielded system, the model is of in-
terest in its own right, as they revealed structure that was hidden
at the aggregate level — structure that can influence DTN perfor-
mance. Indeed, using a trace-driven simulation of epidemic rout-
ing, we showed that this finer grained route-level model of inter-
contact times predicts performance much more accurately than the
coarser-grained all-bus-pairs aggregated model. This suggests that
one must take care in choosing the right level of model granular-
ity when modeling mobility-related measures such as inter-contact
times, in DTN networks. Determining the appropriate granularity
of models is both a difficult and a deep problem. At one extreme we
can use a movement model, such as Brownian motion with parame-
ters that are chosen to correspond to the parameters of the aggregate
inter-contact time distribution obtained from a trace. At another
extreme we can devise a model that accounts for the physics of the
underlying system such as described above for our bus-based DTN
network.

Our ongoing work includes the understanding and modeling of
short inter-contact times. Our future research will focus on iden-
tifying the level of abstraction needed to produce good models,
where goodness refers to how well generated traces statistically
match collected mobility traces and how well models predict the
behavior of different information dissemination algorithms. We
will also focus on developing techniques for teasing out the physi-
cal structure from a trace (such as the underlying periodic behavior
in the inter-contact times) in the absence of domain knowledge.
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APPENDIX

A. TRACE-DRIVEN SIMULATION
DETAILS

A meeting trace can be represented as G =< V, L >, where V
is the set of nodes and L is the set of edges. Each edge l ∈ L,
represents a contact between two nodes v1, v2 ∈ V , and is labeled
with the time interval that the contact happens, [s(l), e(l)], where
s(l) represents the starting time of the contact, and e(l) represents
the ending time of the contact.

We consider the routing of a unicast packet in such network
under the assumption that when two nodes come into contacts,
packets can be instantaneously transmitted from one node to the
other. As Figure 12 demonstrates, in order for a packet generated
at node src at time t to reach the destination node dest, a time-
respective path in the network, P = (l1, ..., lk), is required such
that e(l1) ≥ t and the edges along the path have increasing time
labels, i.e., s(li) < e(lj), for any i < j. A path is available until a
certain time, i.e., avail(P ) = min{e(li), i = 1, ..., k}. A packet
generated at time t traversing along path P will experience a delay
given by max = {0, s(li) − t, i = 1, ..., k}. This means that as t
increases, the delay on a path decreases linearly with time, until it
becomes 0 after which the delay remains 0 until t = avail(P ). We
assume that packets generated at t = avail(P ) can be delivered
through path P , but packets generated right after this time, denoted
as avail(P )+ cannot be delivered through path P .

We are interested in evaluating the delivery delay, number of
copies sent, etc. for packets generated at any point of time for given
source-destination pair under a particular routing scheme. The fol-
lowing observations allow us to simulate the propagation of a finite
number of packets to obtain these information. First, one can show
that, for a certain set of routing schemes, the delay vs. generation
time plot of a node pair is piecewise linear. With each line segments
connected with vertical lines representing jumps in delay when a
previous path becomes invalid, or when a new path is used from
that time on. Similarly, the number of copies vs. generation time
plot is also piecewise linear. Secondly, we observe that the time
instances when contacts start (or end) are the time instances when
new paths become available (or existing paths become invalid).



Based on the piecewise linear property, we generate packets at
time instances when contacts starts and ends, and then using the
metrics (delay, copies made, hop count) obtained for these pack-
ets to obtain information for packets generated at any time. More
specifically, for each source-destination pair, a packet was gener-
ated respectively at the simulation start time, the starting time s(l),
the ending time e(l), and right after the ending time e(l)+, of each
contact.2. We then perform trace-driven simulations of epidemic
routing for these trace packets.

B. EM ALGORITHMS FOR
ONE-BASE-MEAN MODEL

In this section, we outline the derivation of EM algorithm for the
model (3) in Section 5.4 using all observations.

Assume that we have N fully observed inter-contact time, xi,
(i = 1, ..., N), Ns start-censored inter-contact time observations,
Si,(i = 1, ..., Ns), Ne end-censored inter-contact time observa-
tions, Ei,(i = 1, ..., Ne), and Nn no-meeting observations, Ni,(i =
1, ..., Nn).

We introduce hidden variables for each observations (i.e., sam-
ples) representing the number of physical meetings within the ob-
served inter-contact time.

In Expectation-step, we derive p(l|xi, Θt) (p(l|Si, Θt),
p(l|Ei, Θt), p(l|Ni, Θt)), i.e., the distribution of the number of
physical meetings within the inter-contact time, given the fully ob-
served data (started-censored data, end-censored data, no-meeting
observations) and the current estimates of model parameters, Θt =
(pt, µt, σ

2
t ).

(1) Fully observed inter-contact times. By Bayes’ Rule, we
have:

p(l|xi, Θt) =
p(l, xi|Θt)

p(xi|Θt)

=
pl−1

t (1 − pt)fN (xi, lut, σ
2
t )

Σ∞
j=1p

j−1
t (1 − pt)fN (xi, jµt, σ2

t )

for i = 1, ..., N , l = 1, 2, ....
(2) Start-censored observations. As discussed in Section 5.4,

we assume such observation is the residual lifetime, and its PDF is
given by fY (x) = 1−FX (x)

EX
, where FX(x), EX is the CDF and

mean of the inter-contact time respectively. We have:

gl(Si) := p(Si|l, Θt) = � ∞

Si

fN (x, lµt, σ
2
t )dx/lµt. (6)

The conditional distribution for the number of physical meetings
given the start-censored observation is given by:

p(l|Si, Θt) =
p(l, Si|Θt)

p(Si|Θt)

= � ∞

Si

pl−1
t (1 − pt)fN (x, lµt, σ

2
t )dx/lµt� ∞

j=1 pj−1
t (1 − pt) � ∞

Si

fN (x, jµt, σ2
t )dx/jµt

for Si, i = 1, ..., Ns, l = 1, 2, ....
(3) No-meeting observations. Assume the CDF corresponding

to the PDF gl(x), i.e., Eq.6, is Gl(x), i.e., Gl(x) = � x

−∞
gl(y)dy.

We have

p(l|Ni, Θt) =
p(l, Ni|Θt)

p(Ni|Θt)
=

pl−1
t (1 − pt)(1 − Gl(Ni))� ∞

j=1 pj−1
t (1 − pt)(1 − Gj(Ni))

,

2The packets generated right after e(l), i.e., e(l)+, have a genera-
tion time of e(l), but was marked as trail packets such that it cannot
be sent during contact l.

for i = 1, ..., Nn, l = 1, 2, ....
(4) End-censored observations. We have

p(l|Ei, Θt) =
p(l, Ei|Θt)

p(Ei|Θt)

= � ∞

Ei

pl−1
t (1 − pt)fN (x, lµt, σ

2
t )dx� ∞

j=1 pj−1
t (1 − pt) � ∞

Ei

fN (x, jµt, σ2
t )dx

for i = 1, ..., Ne, l = 1, 2, ....
In Maximization-step, we derive the expectation of log complete

data likelihood function, conditioned on the observations and the
current estimates of model parameters, as follows:

Q(Θ, Θt) := E[log(P (X,Y |Θ)|X, Θt],

and obtain new estimation for model parameters by setting:

Θt+1 = argmaxΘQ(Θ,Θt).

Omitting the derivations (which is similar to that in [4]), we get the
following updating rule:

pt+1 = nump/denomp

µt+1 =

� N

i=1

� ∞

l=1 xilp(l|xi, Θt)� N

i=1

� ∞

l=1 l2p(l|xi, Θt)

(σ2)t+1 =

� N

i=1

� ∞

l=1(xi − lµt+1)
2p(l|xi, Θ

t)� N

i=1

� ∞

l=1 p(l|xi, Θt)

where t = 1, 2, .. is the iterative step, and

nump =
N�

i=1

∞�

l=1

(l − 1)p(l|xi, Θt)

+

Ns�

i=1

∞�

l=1

(l − 1)p(l|Si, Θt)

+

Ne�

i=1

∞�

l=1

(l − 1)p(l|Ei, Θt)

+

Nn�

i=1

∞�

l=1

(l − 1)p(l|Ni, Θt)

denomp =
N�

i=1

∞�

l=1

lp(l|xi, Θt) +
Ns�

i=1

∞�

l=1

lp(l|Si, Θt)

+
Ne�

i=1

∞�

l=1

lp(l|Ei, Θt) +
Nn�

i=1

∞�

l=1

lp(l|Ni, Θt)

Note that we assume the censored data only affect the estimation
of p.
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