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Abstract Developments in image acquisition technology make

high volumes of neuron images available to neuroscientists
for analysis. However, manual processing of these images
is not practical and is infeasible for larger and larger scale
studies. Reliable interpretation and analysis of high volume
data requires accurate quantitative measures. This requires
analysis algorithms to use as realistic as possible realistic
mathematical models that inherit the underlying geometry
of biological structures in order to extract topological infor-
mation. In this paper, we first introduce principal curves as a
model for the underlying skeleton of axons and branches,
then describe a recursive principal curve tracing (RPCT)
method to extract this topology information from 3D mi-
croscopy imagery. RPCT first finds samples on the one di-
mensional principal set of the intensity function in space.
Then, given an initial direction and location, the algorithm
iteratively traces the principal curve in space using our prin-
cipal curve tracing (PCT) method. Recursive implementa-
tion of PCT provides a compact solution for extracting com-
plex tubular structures that exhibit bifurcations.

Keywords Axon tracing - Principal curve

1 Introduction

Functional and structural neuroimaging techniques are com-
mon tools to analyze the connectivity and functionality of
neuronal structures which can be used to understand how
neuronal networks behave and can be used for treatment of
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neuro-degenerative diseases such as Alzheimer or Parkin-
son. Different techniques have been implemented to high-
light the structural and/or functional properties of certain bi-
ological networks. Structural and functional MR(s/f MRI)
and diffusion tensor/spectral imaging (DTI/DSI) for human
neuroimaging have been used to identify important neuronal
fiber tracks in the brain that helps to identify brain tumors
and increase the accuracy of treatment. Similarly, multipho-
ton/confocal images from mice help researchers to develop
reliable wiring diagrams, which enable a better understand-
ing of how the central nervous system operates, and how the
brain works. With recent developments in imaging technol-
ogy, high volumes of neuron images are available to neu-
roscientists to analyze, but manual processing of this data
is becoming impractical due to high data volume. Moreover,
reliable interpretation of such massive data requires accurate
quantitative measures that can be obtained without human
intervention. To this end, realistic mathematical models that
explain the underlying geometry of neuronal structures can
be used to extract topological information, which in turn can
be used in obtaining functional models and conclusions us-
ing simulations.

Structures with branching tree forms are common in three-
dimensional (3D) biomedical images; such structures include
the bronchial tree, vascular and neuronal networks in the
brain and elsewhere in the body of an organism. In order to
obtain the topology or wiring information from 3D imagery,
different methods have been proposed in various contexts.
Most methods seek some form of optimal path/tree solution
by minimizing an objective function locally or globally. A
commonly sought optimality condition is the shortest Eu-
clidean length between end points while constrained to the
high (or low) intensity regions of the image where the object
of interest resides. Optimal wiring (trace) connecting two
voxels can be identified by searching all possible trace can-
didates (global search) or by constraining this optimal trace
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search procedure to local neighborhoods (local search), and
assigning the path that has the minimum length as the solu-
tion.

Global methods such as wave propagation or vector scoop-
ing Deschamps and & Cohen (2001); Schmitt et al (2004);
Vasilkoski and & Stepanyants (2009); Rodriguez et al (2009)
return optimal traces (also called the centerline) in exchange
for speed. Since search space increases with the dimension
and size of the data and a greedy search can be employed
to find a reasonably good suboptimal trace; these methods
are generally applied to already segmented or well defined
sparsely distributed (neuronal) structures. Since searching
all possible scenarios is not computationally feasible for in-
creased data size (i.e. number of voxels), one common ap-
proach is to use slice based approximations to process 3D
data assuming curvilinear structures mainly propagate in one
direction, thus remaining in a planar field most of the time.
This way, the trace optimization problem in 3D can be ap-
proximated by a 1D tracking problem of a 2D-object. Track-
ing can be achieved through simple predictive linear filters Cai
et al (2006, 2008); Wang et al (2007); Jurrus et al (2009);
Aykac et al (2003). Another commonly used global method
is the 3D thinning operation. This type of method can be
used to obtain the skeleton of the data, but this operation is
not robust to noise and needs detailed supervision to prevent
unnecessary splits Paldgyi and & Kuba (1998); Zhou et al
(2008).

Local methods employ local decisions to trace the cen-
terline without searching the whole space and testing all pos-
sible scenarios. In general, local methods start from a seed
point and iterate through space by optimizing an objective
function defined in the vicinity of the current iteration. Al-
though, these exploratory algorithms estimate the optimum
paths locally, and they provide fast and feasible solutions
for the problem Bas and & Erdogmus (2010a); Wink et al
(2004); Frangi et al (1999); Al-Kofahi et al (2004); Bas and
& Erdogmus (2010b). In this setup, a common feature is
the local curvature. Curvature of the curvilinear structure
can be estimated by the eigenanalysis of the Hessian matrix
of the image intensity in various biomedical images. More-
over, multiscale representation of the data enables the high-
lighting of curvilinear structures by searching in the scale
space as well as in spatial feature space. The multiscale rep-
resentation can also be used for curvilinear radius extraction
or image denoising Chen et al (2002). In addition, a more
abstract connectivity analysis can be achieved by using at-
lases. Although most methods for connectivity analysis as-
sumes tree-like structures which imposes local connectivity
through graph representation of the data, it is also possible
to define regional connectivity Huang et al (2009) by using
functional neuroimages instead of voxel-based connectivity
measures.

One of the biggest challenges in tracing of curvilinear

structures is the detection and the analysis of branching loca-
tions. Greedy methods such as wave propagation or scoop-
ing provide a direct solution to splitting or merging branches
by checking all of the image/feature space. Unfortunately, as
mentioned earlier, as the data size increases these methods
are not suitable for tracing without prior segmentation infor-
mation where boundary knowledge of the curvilinear struc-
ture is given. Previously mentioned 2D tracking versions of
these methods employ occlusion detection algorithms to de-
cide if a bifurcation exists. A more robust tracking method is
discussed in Jurrus et al (2009), where authors used an adap-
tive predictive filtering scheme to improve the trajectory.
However, note that these decisions are based on an arbitrary
2D projection, i.e. sagittal or coronal slice, which does not
have to be aligned with the curvilinear structure. Such 2D
approaches introduce an artificial occlusion problem that is
not present in 3D, then try to resolve this self-created issue.
Methods that operate in 3D will capture physical conditions
and constraints better, and avoid such artificially created oc-
clusions automatically. For that reason, 3D exploratory al-
gorithms are commonly used for local decisions of bifur-
cation points. Moreover, they can be combined with other
decision mechanisms easily. Probabilistic methods such as
stochastic tractography or hypothesis testing techniques can
be used to detect and handle bifurcations Al-Kofahi et al
(2004); Cetingul et al (2009), where most of these methods
treat bifurcation points as special cases, and detection and
processing of these cases are handled separately.

In this paper we propose a geometrically motivated strat-
egy to detect and handle branches. The method described
here relies on the concept of principal curves that underly
functions and uses a principal curve tracing method to trace
the curvilinear structures, while creating the tree in a recur-
sive fashion. Section 2 briefly explains the principal curve
concept and an associated tracing method. In section 3, re-
cursive branching and tree reconstruction strategy is dis-
cussed. Algorithm results are presented in section 4, fol-
lowed by a brief conclusion in section 5.

2 Principal Curves

In statistical machine learning, principal curves are the curves
that pass through the data or data cloud. In differential ge-
ometry, the principal directions at a point on a manifold
are directions along which local curvature is stationary (i.e.
minimum, maximum, or saddle curvature directions). Prin-
cipal curves of functions (a particular choice of the man-
ifold/surface) provide a compact summary of the one di-
mensional underlying structure and can be interpreted as the
nonlinear skeleton of a function in some high dimensional
space; such as intensity or probability distribution over space.
Hastie and Stultz Hastie and & Stuetzle (2003) defined self-
consistent principal curves as consisting of points which are
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the conditional mean of data that orthogonally project to
this point given the curve. Following this, most semi-global
principal curve algorithms seek to reduce the least mean
square error of fitting a model to the data through regres-
sion Hastie and & Stuetzle (2003); Kegl et al (2000); Chang
and & Ghosh (2002); Meinicke et al (2005). Local princi-
pal curve extraction methods are also present in the litera-
ture to define principal curves. In general these methods use
first and second order statistics and derivatives to approxi-
mate the principal curves Einbeck et al (2005); Erdogmus
and & Ozertem (2007).

Here, we briefly discuss the principal surface definition
described in Erdogmus and & Ozertem (2007). Let x € R”
be a random vector with samples Xj,Xs,...,Xy, having a
given pdf estimate of p(x). Let g(x) be the transpose of its
local gradient, and let H(x) be the local Hessian of this pdf.
Using the gradient and Hessian, define the local covariance-
inverse as: C~!(x) = —p~ ' (x)H(x) + p~2g(x)g’ (x). The
local covariance is defined in this manner using the second
order term in the Taylor series expansion of log p(x) in order
for principal curve projections to be consistent with linear
principal component analysis (PCA) projections in the case
of a Gaussian density. Selection of the monotonic function
log above is not unique and it be replaced by any monoton-
ically increasing, twice continuously differentiable function
without influencing the principal curves, but changing the
projection trajectories for moving points on to the principal

curve from its vicinity. Let { (A1 (x),q; (X)), ..., (Au(X),q. (X))}

be the eigenvalue-eigenvector pairs of C~!(x), sorted in as-
cending order: 4} < A, <--- < A,. A point x is on the 0-
dimensional principal set (local maxima), iff g(x) is orthog-
onal to n eigenvectors (g(x) = 0) and all Hessian eigenval-
ues are negative. Similarly, x is on the d-dimensional prin-
cipal set, iff g(x) is orthogonal to at least (n-d) eigenvec-
tors. For instance, without loss of generality, let S (x) =
span{qx(x),q3(xX),...,qn(x)} be the normal space spanned
by the n— 1 orthogonal eigenvectors and S (x) = span{q (x) }
be the tangent vector at x. If a point is on the principal curve,
then g(x) is orthogonal to S, (x). Updates constrained to the
S (x) plane will converge to or diverge from the principal
curves depending on the update direction, whereas propa-
gating along the tangent space (vector) (SH(X)) will trace
the locally defined principal curve at x. So an iterative trac-
ing algorithm using correction-update scheme is possible by
incorporating the iterations on the normal plane(correction
step) and the tangential vector(update step) with proper di-
rections. Fig. 1 illustrates the tracing of a perturbed semicir-
cular data given an initial direction (black arrow) and seed
location (green circle). Consider a general weighted variable-
width kernel density estimate (KDE)! obtained from sam-
ples X1,X2,...,Xy and initial tracing direction Y. KDE is

I KDE is used as an example since it encompasses parametric mix-
ture models as a special case; the method is general for any pdf model.
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Fig. 1 Tracing the principal curve of a data cloud starting from a seed
point - an illustration of the concept.
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where w(x;) is the weight and X; is the variable kernel co-
variance? of the Gaussian kernel G(x;) = Cgie*%xrziflx for
the i data sample x;.

The gradient and the Hessian of the KDE are:
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For p(x) mean-shift (MS) updates are in the form x — x+
ms(x), where

N N
ms(x) = (Z Gy, (x—x)z; H)™! Z Gr,(x—x)Z; 'x; (4)
i=1 i=1
and ms(x) can be decomposed as ms(x) = ms | (x) +ms (X).
Here ms | (x) is the normal component given as V| V1 ms(x),
where V| = [qa2(X),. .., q,(x)]. Similarly, ms (x) is the tan-
gential component given by q; (x)q; (x)” ms(x). Constrained
MS iterations on S (x) force x to converge to the principal
curve through fixed-point iterations whose convergence is
guaranteed. At each iteration, sign of the ms)|(x) must be
corrected with the current tracing direction defined by the
previous iteration (¥;—) and normalized to the step length:
Y(x), = sign(y(x);_ ms(x))ms)|(x). Summary of the algo-
rithm is presented in Table 1.

2 Assuming Gaussian kernels here for illustration.
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Table 1 Summary of Principal Curve Tracing Algorithm

1. Atiteration 7=0 initialize x, the step size 1, and the direction of the
curve ¥p.

2. Atiteration f evaluate the mean shift update ms(x(7)) as in (9).

3. Evaluate the gradient, the Hessian, and perform the eigendecom-
position of c! (x)=V I'V, where V;_, are the eigenvectors with
corresponding eigenvalues ' = diag{A; <A <--- <A, }.

4. Let Vi, and V,_, be the eigenvectors that consequently span
S| (x), and S, (x), such that ms(x) = qi1(x)q1 (x)"ms(x), and
ms (x) =V, ,VI  ms(x).

5. Evaluate the new  curve
sign(yl_jms) (x))ms (x)

6. If p(x) < thr then stop, else x(t+ 1) < x(¢) + ms (x) +;.LH7;—:H

direction  vector Y, =

3 Volumetric Axon Tracing

Following the concept outlined in the previous section, we
formulated a 3D curve tracing algorithm that is suitable for
extraction of curvilinear structures from 3D biomedical im-
ages. In general, in 3D biomedical images, intensity or color
values (c¢) and pixel locations (p) are two common features.
Due to problems that occur in high dimensional spaces while
estimating density using kernel methods, i.e. curse of dimen-
sionality, instead of estimating the density over x = [p;¢],
we assumed that color values lie on the manifold described
by the spatial features (x < p), and incorporate the inten-
sity I(p) as kernel weights. KDE is given as

N
p(x) = Y w(x))Gzx,(x —x;) 5)

i=1

Moreover, as the data size increases, regression meth-
ods become infeasible due to the computational load. To re-
duce the computations, bounded-support Gaussian kernels
are employed Gy, (X —X;) < &tB2 ¢ (p — pi)Gxr (P — Pi) con-
straining computations to neighboring pixels. Here, p; is the
position of a voxel in the neighborhood, where K-Nearest
Neighbors (KNN) in space denoted by NAMV. B, ¢ (p — p;)
is the support ball with L, norm radius €, and « is the nor-
malization constant of the kernel. KDE at voxel location p
is given as

N

Y 1(pi)Kyc (e — i) atBoe (p— Pi)Kyr (P —Pi)

i=1

= ) wiaKgr(p—pi) (6)
Xi€B2¢(p)

p(x)

where w; = I(p;)Kyc (¢ — ¢;) is the weight of the i’ kernel.
Letting B;(x) = aw;Kyr(p —p;), the gradient and Hessian
are

gx)=— Y

Xi€B2 (P

Hx)= Y BX(E, (p—p)p—p)'Z,'—2,") ®)
X€B) ¢(p)

Bi(x)Z,' (p—pi) (M
)

Table 2 Summary of Principal Curve Tracing Algorithm for Image
Datasets

1. Atiteration =0 initialize X, and the direction of the curve 7j.

2. Atiteration ¢ evaluate the wKDE mean shift update ms(x(7)) as in
(9) using the samples that are in the vicinity.

3. Evaluate the gradient, the Hessian, and perform the eigendecom-
position of c! (x)=V I'V where V,_, are the eigenvectors with
corresponding eigenvalues I' = diag{A; < A < --- < A, }.

4. Let Vi, and V,_, be the eigenvectors that consequently span
S (x), and S (x), such that ms)(x) = qi(x)qs (x)"ms(x), and
ms) (x) =V, , V]  ms(x).

5. Evaluate the new curve
SIgl’l(’)/Z;]mSH (x))msH (X)

6. If x is outside the image boundary or p(x) < thr or x is previously
traced then terminate tracing, else x(r+1) = argxnéiTn (v (x; —x)).

direction  vector

Y =

Here Ty is the connected neighborhood of the x composed of 26
voxels in 3D.

Fixed point X < x + ms(x) mean-shift (MS) iterations can
be achieved by equating (7) to O such that
ms(x)=( Y B®ZHTT Y BXE'm O
%i€B2 ¢ (P) xi€B2¢(p)
and ms(x) can be decomposed as ms(x) = ms | (x) +ms (x).
Here ms | (x) is the normal component given as V| V/ ms(x),
where V| = [q2(x),q3(x), . ..,qn(x)]. Similarly, ms) (x) is
the tangential component given by q; (x)q; (x)” ms(x). Con-
strained MS iterations on S (x) force x to converge to the
principal curve through fix-point iterations whose conver-
gence is guaranteed. At each iteration, sign of the ms(x)
must be corrected with the current tracing direction defined
by the previous iteration (y;—;) and normalized to the step
length: y(x); = sign(y(x){_ ms| (x))ms (x). Although these
updates are at subpixel level, instead of calculating the neigh-
borhood of the current iteration, we used the neighborhood
of the voxel encapsulating the current iteration to estimate
the probability density due to the computational issues. Fur-
thermore, in order to obtain continuous tracing over voxels,
we restricted the tracing iterations to immediate spatially
neighboring voxels until the termination of the tracing itera-
tions. Termination of the tracing procedure is controlled by
the estimated probability value p(x) calculated as in (6) or
the convergence of iterations to a previously traced branch.
Summary of the algorithm is presented in Table 2.

4 Recursive Implementation for Tree Reconstruction

Principal sets are combinations of 1D manifolds that form
a tree structure which spans the whole dataset/object. An
intuitive approach to process complex structures having bi-
furcations is to recursively trace each branch. For that pur-
pose, first, we calculate samples from the 1D principal set
of the whole structure in the preprocessing step. Then, for a
given seed location and an initial direction, we trace the cor-
responding branch until it terminates. After each termination
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Fig. 2 a) Synthetic tree data with its projected principal subset. Green dots represent the projections of voxels that are close to the ridge only. b)
Red dots display the first traced branch, other colors represent detected clusters after the first iteration. ¢) Zoomed region around a branching point.

d) Final result.

Fig. 3 Detection and evaluation of principal subset. a) Principal subset. b) Detected clusters.

of branch tracing, the 1D principal set samples are used to
check if there are any nearby branches bifurcating from the
currently traced branch. For those detected branches, a new
PCT algorithm is initialized until all branch candidates are
visited. Noticing that points that are close to the ridge of the
density function will typically have smaller ||ms (x)||, sam-
ples from the 1D principal set of a KDE constructed from a
3D image as described above can be obtained as described
next. For every voxel, we calculate the subspace constrained
mean-shift update, ms, (x), and check if the projection of a
voxel ends up in the same (starting) voxel or not.

Let Y denote the principal subset of the data samples
chosen form the projected voxel locations Y = {X;__y} € R"
such that X; = x; + ms  (x;) satisfying ms (x;) < %1, where
N is the number of voxels in the dataset and 1 € R" is unit
column vector. Fig. 2-a shows the projected principal subset
of the synthetic tree data. Note that Y is a set of projected
samples (not all the data points) that are close to the cen-
terline of the curvilinear structure. Ideally, the PCT method
described before will trace these samples of Y during it-
erations, resulting in a complete and continuous tree like
structure. In a recursive implementation scheme, to reduce
computations and allocated space, a residual strategy can
be adopted. In the following sections, assume that Y rep-
resents the residual of the principal projected samples that
have not been visited by the previous k-1 PCT iterations,
such that after each termination of PCT algorithm, the traced

branch and its neighborhood is deleted from the principal
subset Yiy; < Yi\By, where By represents the k™" traced
branch (curve) using the PCT algorithm. We assumed that
points in the principal subset that are thrr,, voxels away
from the traced branch are considered as neighborhood and
deleted from Y. Fig. 2-a shows the initial principal subset
Y. Red dots in Fig. 2-b represents the first traced branch
B;. Samples in the subset Y, that are close to the traced
branch can be found in terms of their distance to the traced
curve. S = {...X;...} €Y represents the set of data points
in the principal subset Yy such that thrr,, < d(x; —By) <
thryigr. Here, d(x; —By) is the Euclidean distance from the
point (x;) to the closest sample point on the curve. In gen-
eral, samples in Sy form tight cluster lying on 1D manifolds
since they are samples from the close branches that have al-
ready been projected to the principal manifolds. Detection
and evaluation of these clusters in principal subsets fulfill
the recursive cycle of the proposed algorithm. Branching
principal subset clusters: Mean shift method is an unsu-
pervised clustering algorithm that associates datapoints con-
verging to the same density (or cluster) mode. Datapoints
converge through fixed-point iterations as described in (9).
Notice that, subspace constrained algorithm is a projection
of the MS update on the current estimate of the normal sub-
space S, (x). Instead of projecting the data points to sub-
spaces, if one uses the whole space, iterations will result in
convergence to the local density mode instead of the ridge.
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Once all the points converge to their corresponding modes,
the association of the converged data points and the detec-
tion of clusters are straightforward, and it can be achieved
by applying connected component analysis. In order to de-
tect the bifurcating branches and to obtain corresponding
mode locations constrained to the data samples, we used
the method described in Sheikh et al (2007) forcing mode
seeking iterations to the datapoints. In Fig. 2-a, for a given
seed location (yellow cross) and direction (assumed bottom
to top), red dots represent the traced branch, Fig. 2-b shows
the detected clusters after the first termination of the PCT
algorithm. Different colors represent detected nearby prin-
cipal subsets. Fig. 2-c shows a close-up view of one of the
detected clusters with its mode (yellow dot). Red dots rep-
resent the tracing iterations in subpixel accuracy of the PCT
algorithm.

Every detected cluster is tested to find whether it is con-
nected to the traced branch, B or not. For the k" traced
branch, evaluation of detected clusters is achieved by ini-
tializing two PCT algorithms for every detected cluster. Ob-
tained cluster modes are used as the seed locations. The
eigenvector, V, which corresponds to the smallest eigen-
value A; evaluated at the seed location, is selected as the
initial direction of the curve g . Similarly, the second PCT
is initialized for the opposite direction of the Yy for the
same seed point. If any of these two PCT trajectories of the
tested clusters converges to the By, the center of the cluster
is attached to the B; and a new PCT is initialized for the
detected branch. Fig. 2-d displays the output of the final re-
cursion (k = 13" iteration) of the algorithm. Each recursion
traces a fiber segment (B, : k = 1...13) that is labeled with
a different color-shape marker. Notice that each PCT iter-
ation traces a fiber segment, not a piecewise dendrite seg-
ment and the number of the recursion is same as the number
of branches. Figure 3-a displays a single slice from a 3D
cerebellar climbing image stack illustrating an intermediate
recursion step. To give a better idea about the process, in-
stead of displaying nearby residual principal subset samples
that are close to a single branch, we created a figure show-
ing all principal subset samples that are nearby to all traced
branches. Here, red dots represent residual principal subset
samples. Traced branches are labeled with different colors
and shapes (red is reserved for the principal subset samples).
Fig. 3-b displays a zoomed-in version, and clustered mode
locations of the principal subsets are shown with yellow cir-
cles. Be aware that 2D projection of the tracing results are
directly displayed on an image slice which might result in
possible apparent (but not real) mismatches.

5 Application to confocal images

5.1 Datasets

We tested the recursive PCT algorithm on olfactory projec-
tion fiber, cerebellar climbing fiber, and neuromuscular pro-
jection fiber (Brainbow) datasets. We used an &-ball having
aradius sufficient to cover N, = 250 neighbors (approximate
radius of 7 voxels). In general, we used fixed bandwidth for
both spatial and the intensity (color) kernels. We assumed
that fiber radius and the intensity through the branches do
not change dramatically, and used leave-one out cross val-
idation to estimate the spatial and intensity kernels for the
seed location, and used these values for the whole dataset
for the first two datasets. At each step, direction of the prin-
cipal curve is calculated (};) as described in Table 2. The
immediate neighbor voxel center that is closest to the direc-
tion pointed by ¥ is selected as the next approximate curve
sample.

Olfactory dataset has 34 images and each image has 512x512

pixels. Since voxel spacings are same in X, y and z direc-
tions, same kernel widths are used for all spatial kernels to
simplify calculations. Fig. 4-a shows the 3D reconstruction
obtained from the recursive PCT algorithm overlayed with
the image stack. Similarly, cerebellar climbing fiber dataset
has 28 slices, each having 580x352 pixels with isotropic
voxel spacing. Here, thry,, is selected as 4 voxels for both
olfactory and cerebellar datasets. Fig. 4-b displays a 2D pro-
jection of the 3D trajectory overlayed with a region of single
2D slice. We also report qualitative and quantitative results
using Brainbow images as shown in Fig. 5-a. This recent
imaging technique labels individual fibers with different col-
ors enabling easier interpretation by researchers. Although
color distinction is not perfect, these images are highly infor-
mative for the analysis of neuronal connectivity. Brainbow
dataset used in our experiments is composed of 62 slices
each having 342x342 pixels without having any bifurcations.
Similar to the previous datasets, voxel spacing is isotropic.
Kernel covariances £ and I¢ are selected as O'I%I and c”1
where 0, = 5 and o, = 0.3. Since fiber colors vary along the
axis, we employed moving average smoothing for the colors
to adapt to the spatial color change along each axon. To dis-
play the axon trajectories, another moving average filter is
used to smooth trajectories. Fig. 5-b shows the trajectories
of some selected axons. Since there are no bifurcations, we
simply traced neuronal fibers separately using the PCT algo-
rithm. We compared the PCT algorithm with a shape driven
tracing algorithm proposed in Bas and & Erdogmus (2010a)
in terms of centerline deviation. For each slice, average dis-
placement between the ground-truth and algorithms’ outputs
are displayed in Fig. 5-c. Error bars represent the standard
deviation of error for each fiber trace.



Principal Curves as Skeletons of Tubular Objects

Fig. 4 a) 3D reconstruction with Olfactory image overlay. b) Cerebellar Images. Traced branches are represented with cyan color in both images.
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Fig. 5 a) Brainbow image slice. b) Tracing of selected axons using principal curve tracing. c) Calculated centerline deviation of algorithm results.
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all axons.

6 Conclusion

In order achieve a complete wiring diagram, robust, reliable,
and efficient algorithms are needed. In this study we devel-
oped a recursive tracing method to obtain connectivity of
neuronal structures in various confocal microscopy images.
Proposed method employs a principal curve tracing method
which highlights the ridge underlying the intensity distribu-
tion. Estimation of the density function is achieved through
the use of well studied KDE technique (which, in this case
acts as a smooth interpolation technique), and the ridge of
the density estimate is traced by PCT algorithm recursively.
Effectively, the whole process is an extension to the mean-
shift (MS) clustering algorithm, seeking local conditions to
extract the ridge of the intensity function, and utilizing sub-
space analysis to trace it. At the beginning, as a preprocess-
ing step downsampled data points are projected to the clos-
est principal curve. Tracing algorithm then lets the trajectory
progress through a fiber in which the seed is given; the al-
gorithm starts by using MS to project the seed to the nearest
mode, followed by a step-correct cycle based on the local

tangent and orthogonal subspace eigenvectors of the Hes-
sian at the current location. Recursive implementation of the
algorithm is an extension to the original algorithm where de-
tection and tracing of branch candidates are also handled by
the same tracing framework.

In this study, we simply assumed that the fiber radius
is fixed throughout the data space, and we did not men-
tion problems related to KDE estimation, e.g. kernel band-
with selection, selection of &-ball for the KNN on which
the kernel support is bounded. However, one important con-
cept is the selection of the kernel type. In our calculations,
we used Gaussian kernels both for intensity (color) and spa-
tial features due to its simplicity and compactness at its first
and second derivative formulation. Although selected kernel
bandwidth and type are sufficient for the tested datasets as
displayed here, a better strategy would be to employ flat-top
kernels that represents and highlights the volume of the ax-
ons better. In relation to that, the local covariance defined in
the PCT algorithm uses the logarithm of the density function
to better estimate the local geometry. Similarly, a flat-top
kernel will be more compatible with the underlying inten-
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sity distribution.

By defining voxel relations in terms of probabilities, we
prevent the problems due to the variations in the image con-
trast. Since the termination of branches is given in terms of
probabilities, the local contrast variations are also imposed
to the estimated density, enabling us to define global termi-
nation probability that can be used throughout the datasets.
However, estimation of density has its drawbacks: since ker-
nel density estimation methods suffer from the curse of di-
mensionality, we follow a more simple but effective method
interpolating intensity in the spatial domain only. Moreover,
estimation of the density is limited to the bounded kernel
that is defined by the KNN to make computations faster.
As an implementation detail, a faster version of the algo-
rithm can be implemented by replacing MS iterations with
a medoidshift updates, since previously calculated pairwise
distances during KNN calculations can also be used to cal-
culate medoidshift updates.

Depending on the complexity of the neuronal structures,
resulting connectivity trees might have unwanted loops. The
main reason for this error is the lack of high resolution in im-
ages, especially in depth direction. To prevent these loops,
we applied a minimum spanning tree Cormen et al (2001)
algorithm to the obtained connectivity graph in order to dis-
connect unnecessary edges. Edges in the graph are weighted
based on corresponding voxels’ intensity value. In addition,
another interesting observation is the path selective graph
generation. Since our approach traces branches recursively,
based on the iteration order, different tree representations
can be obtained due to the loops in the graph. For example,
after the tracing of the i'" branch, B;, assume that there are 2
detected principal subset clusters, Cs;, | and Cs, » around IB;,
where evaluation of these clusters converge to B;. Moreover,
assume that these clusters are connected to each other as
well due to low resolution artifacts, and they form a closed
loop with B;. Since the first PCT algorithm will also trace
the second cluster, we will get an empty branch for the sec-
ond one. It is because, the tracing iteration for the latter will
terminate since the current tracing location will hit a previ-
ously traced structure as explained in Table 2 as soon as the
tracing starts. This implies that, depending on the order of
execution, parent and child nodes of a tree will switch. One
method to eliminate this error (which is actually due to the
resolution of images) is the repetitional tracing. For every
recursive iteration, permutation of the tracing order can also
be evaluated, and in the end ensemble of graphs can be used
to get a final graph and therefore a final tree. However, this
process will become infeasible as the number of branches
increase in the images, therefore the neuronal structures get
complicated. In fact, one can also approach this problem by
using a perturbation analysis on the connectivity graphs as
discussed in Carreira-Perpinan and & Zemel (2005), there-

fore our future work includes the investigation of such meth-
ods.

7 Information Sharing Statement

The Matlab codes, all presented pictures and additional ani-

mations are publicly available under http://ece.neu.edu/~bas/PCT
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